示例#1
0
def main():
    training_set = load_image()
    training_set = mask(training_set)
    # plt.imshow(training_set[0])
    # plt.show()
    results = googlenet(training_set,
            dropout_keep_prob=0.4, 
            num_classes=2, 
            is_training=True, 
            restore_logits = None, 
            scope='')
    print results[0]
示例#2
0
def upload_image():
    if request.method == "POST":
        print(request.files)
        f = request.files['image']
        path = './uploads/' + f.filename
        f.save(path)
        #Preprocessing tasks
        resized, original = load_image(path)

        if (resized is not None):
            T, warped = wrap_transform(resized, original)

            if T is not None:
                keyval = detectTexts(T)
                print(keyval)
                return dict(status='success',
                            data=keyval,
                            msg='success',
                            code='200')
            else:
                keyval = detectTexts(resized)
                print(keyval)
                if (bool(keyval)):
                    return dict(status='success',
                                data=keyval,
                                msg='success',
                                code='200')
                else:
                    return dict(status='failed',
                                data=keyval,
                                msg='failed',
                                code='400')

        else:
            return dict(status='failed',
                        msg="Image not found",
                        code='400',
                        data={})
示例#3
0
def infer_from_path(image_path, model, prior_boxes):
    target_size = model.input_shape[1:3]
    image_array, original_image_shape = load_image(image_path, target_size)
    detections = _infer(image_array, model, original_image_shape, prior_boxes)
    return detections
示例#4
0
                    type=int,
                    default=10,
                    help='Number of iterations')
    ap.add_argument('--alpha',
                    type=float,
                    default=0.01,
                    help='The ratio of content to style, default is 1e-2.'
                    'Increase for more content, decrease for more style.')
    ap.add_argument(
        '--afactor',
        type=int,
        default=3,
        help='Abstract factor. How abstract do you want your image to be?')
    return ap.parse_args()


if __name__ == '__main__':
    args = parse_args()
    style_image = load_image(args.style)
    content_image = load_image(args.content)
    run(style_image=style_image,
        content_image=content_image,
        save_path=args.save_path,
        height=args.size,
        width=args.size,
        iterations=args.iter,
        content_weight=args.alpha,
        style_weight=1.0,
        total_variation_weight=0.2,
        abstract_factor=args.afactor)
示例#5
0
        # Make Detections
        results = holistic.process(image)
        # print(results.face_landmarks)
        
        
        # Recolor image back to BGR for rendering
        image.flags.writeable = True   
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

        # Pose Detections
        mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS
                                 )
        # get body pose
        

        pose_features = extract_features(load_image(image))
        
        if np.nan not in pose_features.values():
            
            try:
                predicted_pose = model.predict_proba(
                    np.atleast_2d([*pose_features.values()])
                )

                result = {"time": time}
                for key, val in zip(model.classes_, predicted_pose.flatten()):
                    result[key] = val

                best_pred = get_best_predicition(predicted_pose.flatten(), model.classes_, thresholt=0.05)

                if best_pred:
示例#6
0
    num_ground_truth_boxes = 0
    class_decoder = get_arg_to_class(class_names)
    num_classes = len(class_names)
    data_manager = DataManager(dataset_name,
                               split='test',
                               class_names=selected_classes)
    ground_truth_data = data_manager.load_data()
    difficult_data_flags = data_manager.parser.difficult_objects

    image_names = sorted(list(ground_truth_data.keys()))
    for image_name in image_names:
        ground_truth_sample = ground_truth_data[image_name]
        image_prefix = data_manager.parser.images_path
        image_path = image_prefix + image_name
        original_image_array = cv2.imread(image_path)
        image_array, original_image_size = load_image(image_path, input_shape)
        # original_image_size = original_image_size[::-1]
        image_array = substract_mean(image_array)
        predicted_data = predict(model, image_array, prior_boxes,
                                 original_image_size, num_classes,
                                 class_threshold, iou_nms_threshold)

        ground_truth_sample = denormalize_box(ground_truth_sample,
                                              original_image_size)
        difficult_objects = difficult_data_flags[image_name]
        difficult_objects = np.asarray(difficult_objects, dtype=bool)
        num_ground_truth_boxes += np.sum(np.logical_not(difficult_objects))
        if predicted_data is None:
            continue
        """
        draw_image_boxes(predicted_data, original_image_array,
from models import SSD300
from preprocessing import load_image
from datasets import get_class_names
from datasets import get_arg_to_class
# from utils.inference import infer_from_path
from utils.inference import infer_from_array
from visualizer import draw_image_boxes

# parameters
dataset_name = 'VOC2007'
# image_path = '../images/boys.jpg'
image_path = '../images/voc_cars.jpg'
weights_path = '../trained_models/SSD300_weights.hdf5'
model = SSD300(weights_path=weights_path)
class_names = get_class_names(dataset_name)
arg_to_class = get_arg_to_class(class_names)
original_image_array = load_image(image_path)[0]

# detections = infer_from_path(image_path, model)
target_size = model.input_shape[1:3]
image_array, original_image_shape = load_image(image_path, target_size)
detections = infer_from_array(image_array, model, original_image_shape)

draw_image_boxes(detections, original_image_array, arg_to_class)
示例#8
0
def reshape_pred(pred): return pred.reshape(224,224,2)[:,:,1]

if __name__=="__main__":
	"""
	This script makes predictions on a list of inputs with a pre-trained model,
	and saves them as transparency masks over the original image.
	# Example:
	$ python predict.py image1.jpg image2.jpg 
	"""
	imgs = args.imgs
	img_sz = args.img_size

	input_shape = (224,224,3)

	img_input = Input(shape=input_shape)
	x = create_tiramisu(2, img_input, nb_layers_per_block=[4,5,7,10,12,15], p=0.2, wd=1e-4)
	model = Model(img_input, x)

	model.compile(loss='categorical_crossentropy', 
						optimizer=keras.optimizers.RMSprop(1e-3),
						metrics=["accuracy"],
						sample_weight_mode='temporal')

	model.load_weights(args.model)

	for i, img in enumerate(imgs):
		full_img = load_image(img, img_sz)
		full_img_r, full_pred = waldo_predict(full_img)
		mask = prediction_mask(full_img_r, full_pred)
		mask.save(os.path.join(args.output_path, 'output_'+str(i)+'.png'))