def __getitem__(self, index): path = self.file_path + '/' + self.file_names[index] + '.wav' data = librosa.core.load(path, sr=SR, mono=True)[0] #pre-emphasis data = preprocessing.preemphasis(data) mfcc = librosa.feature.mfcc(y=data, sr=SR, hop_length=1024, n_mfcc=40) if self.transform: mfcc = self.transform(mfcc) soundFormatted = mfcc.float() soundFormatted = torch.cat((soundFormatted, soundFormatted, soundFormatted)) #?? size 확인하기 # print("Brinda", soundFormatted.shape) return soundFormatted, self.labels[index] #print("soundformat shape:", soundFormatted.shape) soundFormatted = torch.from_numpy(mfcc).float() soundFormatted = torch.cat( (soundFormatted, soundFormatted, soundFormatted)) #?? size 확인하기 # soundFormatted = torch.unsqueeze(soundFormatted, dim=0) # soundFormatted = torch.cat((soundFormatted,soundFormatted,soundFormatted)) return soundFormatted, self.labels[index]
def __getitem__(self, index): path = self.file_path + '/' + self.file_names[index] + '.wav' data = librosa.core.load(path, sr=SR, mono=True)[0] #pre-emphasis data = preprocessing.preemphasis(data) mrcg = MRCG.mrcg_extract(data, SR) # if self.transform: # mrcg = self.transform(mrcg) # soundFormatted = mrcg.float() # # soundFormatted = torch.squeeze(soundFormatted) # # soundFormatted.transpose_(0, 1) # print("mrcg shape", soundFormatted.shape) # return soundFormatted, self.labels[index] soundFormatted = torch.from_numpy(mrcg).float() # soundFormatted.transpose_(0, 1) soundFormatted = soundFormatted.unsqueeze(dim=0) soundFormatted = torch.cat( (soundFormatted, soundFormatted, soundFormatted)) # print("mrgc shape", soundFormatted.shape) return soundFormatted, self.labels[index]
def __getitem__(self, index): path = self.file_path + '/' + self.file_names[index] + '.wav' data = librosa.core.load(path, sr=SR, mono=True)[0] #pre-emphasis data = preprocessing.preemphasis(data) mfcc = librosa.feature.mfcc(y=data, sr=SR, hop_length=1024, n_mfcc=40) soundFormatted = torch.from_numpy(mfcc).float() return soundFormatted, self.file_names[index]
def __getitem__(self, index): path = self.file_path + '/' + self.file_names[index] + '.wav' data = librosa.core.load(path, sr=SR, mono=True)[0] #pre-emphasis data = preprocessing.preemphasis(data) mrcg = MRCG.mrcg_extract(data, SR) soundFormatted = torch.from_numpy(mrcg).float() # soundFormatted.transpose_(0, 1) # print("data shape", soundFormatted.shape) return soundFormatted, self.file_names[index]
def __getitem__(self, index): path = self.file_path + '/' + self.file_names[index] + '.wav' data = librosa.core.load(path, sr=SR, mono=True)[0] #pre-emphasis data = preprocessing.preemphasis(data) mfcc = librosa.feature.mfcc(y=data, sr=SR, hop_length=1024, n_mfcc=40) if self.transform: mfcc = self.transform(mfcc) soundFormatted = mfcc.float() soundFormatted = torch.squeeze(soundFormatted) # soundFormatted.transpose_(0, 1) # print("data shape", soundFormatted.shape) return soundFormatted, self.labels[index] soundFormatted = torch.from_numpy(mfcc).float() # soundFormatted.transpose_(0, 1) # print("data shape", soundFormatted.shape) return soundFormatted, self.labels[index]