def processData(data): data = pu.dropData(np.array([0, 0, 0, 0, 0, 0, 0, 0]), data) data = np.delete(data, [0, 1, 2], 0) data = pu.dropData(np.array([0, 0, 0, 0, 0, 0, 1, 0]), data) data = np.delete(data, [0, 1, 2], 0) data = pu.dropData(np.array([0, 1, 0, 0, 0, 0, 0, 1]), data) data = np.delete(data, [0, 1, 2], 0) data = pu.dropData(np.array([0, 0, 0, 0, 0, 0, 0, 1]), data) data = np.delete(data, [0, 1, 2], 0) data = pu.dropData(np.array([0, 0, 0, 0, 1, 0, 1, 0]), data) data = np.delete(data, [0, 1, 2], 0) gc.collect() #data = np.random.shuffle(data) print(data[:, 1].shape) full_X = data[:, 0] full_Y = data[:, 1] new_X = full_X[0][np.newaxis, ...] new_Y = full_Y[0][np.newaxis, ...] for i in range(full_Y.shape[0] - 1): new_Y = np.concatenate((new_Y, full_Y[i + 1][np.newaxis, ...]), axis=0) new_X = np.concatenate((new_X, full_X[i][np.newaxis, ...]), axis=0) new_data = [np.array(new_X), np.array(new_Y)] #new_data = pu.qualifyData(new_data) print(new_data[0].shape) print(new_data[1].shape) return new_data for i in range(full_X.shape[0]): if i == 0: addArray = full_X[i] new_X = addArray[np.newaxis, ...] if i == 1: addArray = full_X[i] print("test") print(addArray.shape) print(new_X.shape) new_X = np.concatenate((new_X, addArray[np.newaxis, ...]), axis=0) if i > 1: addArray = full_X[i] print("test") print(new_X.shape) new_X = np.concatenate((new_X, addArray[np.newaxis, ...]), axis=0) for i in range(full_Y.shape[0]): if i == 0: addArray = full_Y[i] new_Y = addArray[np.newaxis, ...] if i == 1: addArray = full_Y[i] print("test") print(addArray.shape) print(new_Y.shape) new_Y = np.concatenate((new_Y, addArray[np.newaxis, ...]), axis=0) if i > 1: addArray = full_Y[i] print("test") print(new_Y.shape) new_Y = np.concatenate((new_Y, addArray[np.newaxis, ...]), axis=0)
def processData(data): data = pu.dropData(np.array([0, 0, 0, 0, 0, 0, 0, 0]), data) data = np.delete(data, [0, 1], 0) data = pu.dropData(np.array([0, 0, 0, 0, 0, 0, 1, 0]), data) data = np.delete(data, [0, 1], 0) data = pu.dropData(np.array([0, 0, 0, 0, 0, 0, 0, 1]), data) data = np.delete(data, [0, 1], 0) gc.collect() #data = np.random.shuffle(data) print(data[:, 1].shape) full_X = data[:, 0] full_Y = data[:, 1] new_X = full_X[0][np.newaxis, ...] new_Y = full_Y[0][np.newaxis, ...] for i in range(full_Y.shape[0] - 1): new_Y = np.concatenate((new_Y, full_Y[i + 1][np.newaxis, ...]), axis=0) new_X = np.concatenate((new_X, full_X[i][np.newaxis, ...]), axis=0) split_x = np.array_split(new_X, new_X.shape[0] / 7) new_X = None gc.collect() X = None for element in split_x: if element.shape[0] != 7: continue if X is None: X = element[np.newaxis, ...] else: print(element.shape) print(X.shape) X = np.concatenate((X, element[np.newaxis, ...]), axis=0) split_y = np.array_split(new_Y, new_Y.shape[0] / 7) new_Y = None gc.collect() y = None for element in split_y: if element.shape[0] != 7: continue if y is None: y = element[np.newaxis, ...] else: print(element.shape) print(y.shape) y = np.concatenate((y, element[np.newaxis, ...]), axis=0) new_data = [np.array(X), np.array(y)] #new_data = pu.qualifyData(new_data) print(new_data[0].shape) print(new_data[1].shape) return new_data
def processData(data): data = pu.dropData(np.array([0, 0, 0, 0, 0, 0, 0, 0]), data) data = np.delete(data, [0, 1, 2], 0) data = pu.dropData(np.array([0, 0, 0, 0, 0, 0, 1, 0]), data) data = np.delete(data, [0, 1, 2], 0) data = pu.dropData(np.array([0, 1, 0, 0, 0, 0, 0, 1]), data) data = np.delete(data, [0, 1, 2], 0) data = pu.dropData(np.array([0, 0, 0, 0, 0, 0, 0, 1]), data) data = np.delete(data, [0, 1, 2], 0) data = pu.dropData(np.array([0, 0, 0, 0, 1, 0, 1, 0]), data) data = np.delete(data, [0, 1, 2], 0) gc.collect() #data = np.random.shuffle(data) print(data[:, 1].shape) full_X = data[:, 0] full_Y = data[:, 1] new_X = full_X[0][np.newaxis, ...] new_Y = full_Y[0][np.newaxis, ...] for i in range(full_Y.shape[0]): try: if not np.array_equal(full_Y[i], full_Y[i + 1]): for j in range(3): index = j - 1 add_Y = full_Y[i + index] add_X = full_X[i + index] print(new_Y.shape) print(add_Y[np.newaxis, ...].shape) new_Y = np.concatenate((new_Y, add_Y[np.newaxis, ...]), axis=0) new_X = np.concatenate((new_X, add_X[np.newaxis, ...]), axis=0) else: print("Skip") except: print("not posible") print(new_X.shape) new_data = [np.array(new_X), np.array(new_Y)] new_data = pu.qualifyData(new_data) print(new_data[0].shape) print(new_data[1].shape) return new_data for i in range(full_X.shape[0]): if i == 0: addArray = full_X[i] new_X = addArray[np.newaxis, ...] if i == 1: addArray = full_X[i] print("test") print(addArray.shape) print(new_X.shape) new_X = np.concatenate((new_X, addArray[np.newaxis, ...]), axis=0) if i > 1: addArray = full_X[i] print("test") print(new_X.shape) new_X = np.concatenate((new_X, addArray[np.newaxis, ...]), axis=0) for i in range(full_Y.shape[0]): if i == 0: addArray = full_Y[i] new_Y = addArray[np.newaxis, ...] if i == 1: addArray = full_Y[i] print("test") print(addArray.shape) print(new_Y.shape) new_Y = np.concatenate((new_Y, addArray[np.newaxis, ...]), axis=0) if i > 1: addArray = full_Y[i] print("test") print(new_Y.shape) new_Y = np.concatenate((new_Y, addArray[np.newaxis, ...]), axis=0)