def run_nb(X_train, y_train, X_test, y_test): nb = GaussianNB() nb.fit(X_train, y_train) return compute_accuracy(y_test, nb.predict(X_test))
def run_linearDiscriminantAnalysis_full(X, y): from learner.LinearDiscriminantAnalysis import LinearDiscriminantAnalysis lda = LinearDiscriminantAnalysis(n_components=1) lda.fit(X, y) return compute_accuracy(y, lda.predict(X))
def run_sk_linearDiscriminantAnalysis_full(X, y): from sklearn.discriminant_analysis import LinearDiscriminantAnalysis lda = LinearDiscriminantAnalysis(n_components=1, solver='eigen') lda.fit(X, y) return compute_accuracy(y, lda.predict(X))
def run_sk_linearDiscriminantAnalysis(X_train, y_train, X_test, y_test): from sklearn.discriminant_analysis import LinearDiscriminantAnalysis lda = LinearDiscriminantAnalysis(n_components=1) lda.fit(X_train, y_train) return compute_accuracy(y_train, lda.predict(X_train)), compute_accuracy( y_test, lda.predict(X_test))