示例#1
0
    def load_pickle_data(self):
        data = pickle.load(open(self.data_path, 'rb'))
        X_train_path = self.fp_prefix + '_train.pkl'
        X_test_path = self.fp_prefix + '_test.pkl'
        X_dev_path = self.fp_prefix + '_valid.pkl'

        self.get_max_seq_len(data['train']['text'] + data['test']['text'] +
                             data['valid']['text'])

        # Load embedding
        embedding_path = self.fp_prefix + '_embedding.pkl'
        if not os.path.exists(embedding_path):
            print("Creating new embeddings!")
            self.dictionary = Dictionary(start_feature_id=0)
            self.dictionary.add('UNK')
            textual_features = data['train']['text'] + data['test'][
                'text'] + data['valid']['text']
            for tokens in textual_features:
                for token in tokens:
                    self.dictionary.add(str(token.lower()))

            self.embedding = Embedding(self.dictionary, self.max_seq_len)
            self.embedding.get_embedding(dataset_name=self.dataset_name,
                                         fname=self.wordvec_path)
            pickle.dump(self.embedding, open(embedding_path, 'wb'))

        else:
            print("  - Found cached embeddings")
            self.embedding = pickle.load(open(embedding_path, 'rb'))

        if not os.path.exists(X_train_path):
            print("Creating new train data!")
            X_train = [[
                self.embedding.text_to_sequence(seq)
                for seq in data['train']['text']
            ], data['train']['vision'], data['train']['audio']]
            y_train = data['train']['labels']
            pickle.dump([*X_train, y_train], open(X_train_path, 'wb'))
        else:
            print("  - Found cached train data")
            train_data = pickle.load(open(X_train_path, 'rb'))
            X_train = train_data[:-1]
            y_train = train_data[-1]

        if not os.path.exists(X_test_path):
            print("Creating new test data!")
            X_test = [[
                self.embedding.text_to_sequence(seq)
                for seq in data['test']['text']
            ], data['test']['vision'], data['test']['audio']]
            y_test = data['test']['labels']
            pickle.dump([*X_test, y_test], open(X_test_path, 'wb'))
        else:
            print("  - Found cached test data")
            test_data = pickle.load(open(X_test_path, 'rb'))
            X_test = test_data[:-1]
            y_test = test_data[-1]

        if not os.path.exists(X_dev_path):
            print("Creating new valid data!")
            X_dev = [[
                self.embedding.text_to_sequence(seq)
                for seq in data['valid']['text']
            ], data['valid']['vision'], data['valid']['audio']]
            y_dev = data['valid']['labels']
            pickle.dump([*X_dev, y_dev], open(X_dev_path, 'wb'))
        else:
            print("  - Found cached valid data")
            dev_data = pickle.load(open(X_dev_path, 'rb'))
            X_dev = dev_data[:-1]
            y_dev = dev_data[-1]

        # Convert data to tensor format
        X_train = [
            torch.tensor(x, dtype=torch.int64)
            if i == 0 else torch.tensor(x, dtype=torch.float32)
            for i, x in enumerate(X_train)
        ]
        X_test = [
            torch.tensor(x, dtype=torch.int64)
            if i == 0 else torch.tensor(x, dtype=torch.float32)
            for i, x in enumerate(X_test)
        ]
        X_dev = [
            torch.tensor(x, dtype=torch.int64)
            if i == 0 else torch.tensor(x, dtype=torch.float32)
            for i, x in enumerate(X_dev)
        ]

        # Remove spurious values (-inf)
        for x in X_train:
            clean_tensor(x)
        for x in X_test:
            clean_tensor(x)
        for x in X_dev:
            clean_tensor(x)

        y_train = torch.tensor(y_train, dtype=torch.float32)
        y_test = torch.tensor(y_test, dtype=torch.float32)
        y_dev = torch.tensor(y_dev, dtype=torch.float32)

        if y_train.dim() == 3:
            y_train = y_train.squeeze(dim=-1)
            y_test = y_test.squeeze(dim=-1)
            y_dev = y_dev.squeeze(dim=-1)

        return X_train, X_test, X_dev, y_train, y_test, y_dev
示例#2
0
class CMUMOSIReader(object):
    def __init__(self, opt):
        self.embedding_enabled = True
        #self.use_sentiment_dic = False
        self.all_feature_names = ['textual', 'visual', 'acoustic']
        self.feature_indexes = [
            self.all_feature_names.index(f.strip())
            for f in opt.features.split(',')
        ]
        self.fp_prefix = os.path.join(opt.pickle_dir_path, 'cmumosi')
        self.data_path = self.fp_prefix + '_data.pkl'

    def read(self, opt):

        for key, value in opt.__dict__.items():
            if not key == 'feature_indexes':
                self.__setattr__(key, value)
        X_train, X_test, X_dev, y_train, y_test, y_dev = self.load_pickle_data(
        )

        self.datas = {
            'train': {
                'X': X_train,
                'y': y_train
            },
            'test': {
                'X': X_test,
                'y': y_test
            },
            'dev': {
                'X': X_dev,
                'y': y_dev
            }
        }

        self.train_sample_num = len(X_train[0])
        self.output_dim = 1
        self.input_dims = [
            x.shape[-1] for i, x in enumerate(X_train)
            if (i in self.feature_indexes)
        ]

        if self.embedding_enabled:
            self.input_dims[0] = self.embedding.embedding_size

        self.opt_callback(opt)

    def opt_callback(self, opt):
        opt.dataset_name = self.dataset_name
        opt.feature_indexes = self.feature_indexes
        opt.input_dims = self.input_dims
        opt.train_sample_num = self.train_sample_num
        opt.output_dim = self.output_dim
        opt.embedding_enabled = self.embedding_enabled
        opt.max_seq_len = self.max_seq_len
        if 'embedding' in self.__dict__:
            opt.lookup_table = self.embedding.lookup_table
        if 'emotion_dic' in self.__dict__:
            opt.emotion_dic = self.emotion_dic

    def get_max_seq_len(self, features):
        if 'max_seq_len' not in self.__dict__:
            self.max_seq_len = max([len(feature) for feature in features])

    def load_pickle_data(self):
        data = pickle.load(open(self.data_path, 'rb'))
        X_train_path = self.fp_prefix + '_train.pkl'
        X_test_path = self.fp_prefix + '_test.pkl'
        X_dev_path = self.fp_prefix + '_valid.pkl'

        self.get_max_seq_len(data['train']['text'] + data['test']['text'] +
                             data['valid']['text'])

        # Load embedding
        embedding_path = self.fp_prefix + '_embedding.pkl'
        if not os.path.exists(embedding_path):
            print("Creating new embeddings!")
            self.dictionary = Dictionary(start_feature_id=0)
            self.dictionary.add('UNK')
            textual_features = data['train']['text'] + data['test'][
                'text'] + data['valid']['text']
            for tokens in textual_features:
                for token in tokens:
                    self.dictionary.add(str(token.lower()))

            self.embedding = Embedding(self.dictionary, self.max_seq_len)
            self.embedding.get_embedding(dataset_name=self.dataset_name,
                                         fname=self.wordvec_path)
            pickle.dump(self.embedding, open(embedding_path, 'wb'))

        else:
            print("  - Found cached embeddings")
            self.embedding = pickle.load(open(embedding_path, 'rb'))

        if not os.path.exists(X_train_path):
            print("Creating new train data!")
            X_train = [[
                self.embedding.text_to_sequence(seq)
                for seq in data['train']['text']
            ], data['train']['vision'], data['train']['audio']]
            y_train = data['train']['labels']
            pickle.dump([*X_train, y_train], open(X_train_path, 'wb'))
        else:
            print("  - Found cached train data")
            train_data = pickle.load(open(X_train_path, 'rb'))
            X_train = train_data[:-1]
            y_train = train_data[-1]

        if not os.path.exists(X_test_path):
            print("Creating new test data!")
            X_test = [[
                self.embedding.text_to_sequence(seq)
                for seq in data['test']['text']
            ], data['test']['vision'], data['test']['audio']]
            y_test = data['test']['labels']
            pickle.dump([*X_test, y_test], open(X_test_path, 'wb'))
        else:
            print("  - Found cached test data")
            test_data = pickle.load(open(X_test_path, 'rb'))
            X_test = test_data[:-1]
            y_test = test_data[-1]

        if not os.path.exists(X_dev_path):
            print("Creating new valid data!")
            X_dev = [[
                self.embedding.text_to_sequence(seq)
                for seq in data['valid']['text']
            ], data['valid']['vision'], data['valid']['audio']]
            y_dev = data['valid']['labels']
            pickle.dump([*X_dev, y_dev], open(X_dev_path, 'wb'))
        else:
            print("  - Found cached valid data")
            dev_data = pickle.load(open(X_dev_path, 'rb'))
            X_dev = dev_data[:-1]
            y_dev = dev_data[-1]

        # Convert data to tensor format
        X_train = [
            torch.tensor(x, dtype=torch.int64)
            if i == 0 else torch.tensor(x, dtype=torch.float32)
            for i, x in enumerate(X_train)
        ]
        X_test = [
            torch.tensor(x, dtype=torch.int64)
            if i == 0 else torch.tensor(x, dtype=torch.float32)
            for i, x in enumerate(X_test)
        ]
        X_dev = [
            torch.tensor(x, dtype=torch.int64)
            if i == 0 else torch.tensor(x, dtype=torch.float32)
            for i, x in enumerate(X_dev)
        ]

        # Remove spurious values (-inf)
        for x in X_train:
            clean_tensor(x)
        for x in X_test:
            clean_tensor(x)
        for x in X_dev:
            clean_tensor(x)

        y_train = torch.tensor(y_train, dtype=torch.float32)
        y_test = torch.tensor(y_test, dtype=torch.float32)
        y_dev = torch.tensor(y_dev, dtype=torch.float32)

        if y_train.dim() == 3:
            y_train = y_train.squeeze(dim=-1)
            y_test = y_test.squeeze(dim=-1)
            y_dev = y_dev.squeeze(dim=-1)

        return X_train, X_test, X_dev, y_train, y_test, y_dev

    def get_data(self, shuffle=True, iterable=True, split='train'):
        x = self.datas[split]['X']
        y = self.datas[split]['y']
        feature_indexes = [_ind for _ind in self.feature_indexes]

        # Always include textual modality
        if 0 not in feature_indexes:
            feature_indexes = [0] + feature_indexes

        x = [_x for i, _x in enumerate(x) if i in feature_indexes]

        if iterable:
            all_tensors = []
            for _x in x:
                all_tensors.append(_x)
            all_tensors.append(y)
            trainDataset = TensorDataset(*all_tensors)
            train_loader = DataLoader(trainDataset,
                                      batch_size=self.batch_size,
                                      shuffle=shuffle)
            return train_loader
        else:
            return x, y