def make_data_set(): ds = Dataset() print("Datasets loaded.") X_all = pad_vec_sequences(ds.X_all_vec_seq) Y_all = ds.Y_all #print (X_all.shape) x_train, x_test, y_train, y_test = model_selection.train_test_split(X_all,Y_all,test_size=0.2) y_train = pad_class_sequence(y_train, nb_classes) y_test = pad_class_sequence(y_test, nb_classes) y_test = np.array(y_test) x_train = np.asarray(x_train) x_train.ravel() y_train = np.asarray(y_train) y_train.ravel() return x_train,y_train,x_test,y_test
from keras.utils import np_utils, generic_utils from keras import optimizers, metrics maxlen = 50 #sentences with length > maxlen will be ignored hidden_dim = 32 nb_classes = len(labels) ds = Dataset() print("Datasets loaded.") X_all = pad_vec_sequences(ds.X_all_vec_seq) Y_all = ds.Y_all #print (X_all.shape) x_train, x_test, y_train, y_test = model_selection.train_test_split( X_all, Y_all, test_size=0.2) y_train = pad_class_sequence(y_train, nb_classes) y_test = pad_class_sequence(y_test, nb_classes) #THE MODEL sequence = Input(shape=(maxlen, 384), dtype='float32', name='input') #forwards lstm forwards = LSTM(hidden_dim, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, dropout=0.1, recurrent_dropout=0.1)(sequence) #backwards lstm backwards = LSTM(hidden_dim, activation='tanh', recurrent_activation='hard_sigmoid',