def test_save(): filepath = "./datasets/configs/params.json" params = { "param1": 69, "param2": { "nestedParam": 420 }, "Split": 6969, } save_config(filepath, params) contents = read_config(filepath) assert params == contents
def test_save(): filepath = "./datasets/configs/params.json" params = { "param1": 69, "param2": {"nestedParam": 420}, "Split": 6969, "df": "./datasets/encoding/test.csv", } save_config(filepath, params) contents = read_config(filepath) params.pop("df") assert params == contents
def test_config(): df = pd.DataFrame({"A": np.arange(1, 100), "B": np.arange(1, 100)}) _ = df.to_csv("./datasets/configs/dataset.csv", index=False) params = { "col_1": "A", "col_2": "B", "test_size": 0.2, } config_path = "./datasets/configs/pipeline_config.json" save_config(config_path, params) pipeline = BasePipeline( train_df_path="./datasets/configs/dataset.csv", steps=[times_two, squared, split], config_file=config_path, custom_reader=custom_read, ) pipeline.process() assert len(pipeline.params["X_train"]) == 80 pipeline.remove("split") pipeline.process() assert (pipeline.params["train_df"].shape[0] == pipeline.params["train_df_copy"].shape[0])