def __is_it_possible_for_p(r: pwnlib.tubes.remote.remote, rnd: int, v: bytes) -> None: """Format should be something like: `Supa ez. Is it possible for p to equal Mjg5Cg==? [y/n]`""" p = int(b64decode(v)) print(f'[*] Got value p={p} ... ') k = primes.check(p) print(f'[*] Is it possible? {k} ... ') yn(r, k)
def next_prime(n): if n <= 1: return 2 else: n += 1 while not primes.check(n): n += 1 return n
def get_total_primes(a, b): # a < b < 10^7 primes = ['2', '3', '5', '7'] test_list = [] k = 0 m = 0 result = 0 total_prime = False for i in range(a, b): string = str(i) # test j (every digit of i) against primes list for j in string: if j in primes: test_list.append(j) if len(test_list) == len(string): total_prime = True # test whether i is prime number using primePy if primes.check(i) == True: m += 1 # final check of whether we have a "total prime" if total_prime == True and m == 1: result += 1 # change total_prime boolean to false total_prime = False # reset m to 0 m = 0 # make test_list empty again test_list = [] return result
from primePy import primes # upto 메서드 예제 primes_to_10 = primes.upto(10) print("10까지의 소수 리스트:", primes_to_10) primes_to_100 = primes.between(100, 1000) print("100까지의 소수 리스트:", len(primes_to_100)) print() # 띄어쓰기를 위해서 # 10까지의 소수 리스트: [2, 3, 5, 7] # 100까지의 소수 리스트: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] # first 메서드 예제 first_5_primes = primes.first(5) print("처음 5개 소수 리스트:", first_5_primes) first_10_primes = primes.first(10) print("처음 10개 소수 리스트:", first_10_primes) print() # 처음 5개 소수 리스트: [2, 3, 5, 7, 11] # 처음 10개 소수 리스트: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] # check 메서드 예제 print("15는 소수인가요?", primes.check(15)) print("277은 소수인가요?", primes.check(277)) print() # 15는 소수인가요? False # 277은 소수인가요? True
def is_attractive(n): factors = primes.factors(n) num_factors = len(factors) return num_factors != 1 and primes.check(num_factors)
# called the Euclid Numbers (see wiki). Write a script that finds the smallest # Euclid Number that is not prime. This challenge was proposed by # Laurent Rosenfeld. import sys from primePy import primes def next_prime(n): if n <= 1: return 2 else: n += 1 while not primes.check(n): n += 1 return n def euclid_iter(): prime = 1 prime_prod = 1 while True: prime = next_prime(prime) prime_prod *= prime yield prime_prod+1 for n in euclid_iter(): if primes.check(n): pass else: print(n) break
# 1978 소수 찾기 from primePy import primes sum = 0 length = int(input()) inp = input().split(" ") for t in inp: t = int(t) if primes.check(t) == True: sum +=1 if t == 1: sum -= 1 else: continue print(sum) # def prime_number(number): #개수 # for num in range(number): # inp = map(int,input().split(" ")) # lis = [] # for x in range(1,inp): # for y in range(1,inp): # prime = x*y # if prime == number: