示例#1
0
 def loss(self, trg_batch, train):
     losses = []
     for i in range(len(trg_batch)-1):
         y = self.decode_step(trg_batch[i], train)
         loss = F.softmax_cross_entropy(y, trg_batch[i+1], 0)
         losses.append(loss)
     return F.batch.mean(F.sum(losses))
示例#2
0
 def loss(self, trg_batch, train):
     """Calculates loss values."""
     losses = []
     for i in range(len(trg_batch) - 1):
         y = self.decode_step(trg_batch[i], train)
         losses.append(F.softmax_cross_entropy(y, trg_batch[i + 1], 0))
     return F.batch.mean(F.sum(losses))
示例#3
0
 def loss(self, outputs, inputs):
     losses = [
         F.softmax_cross_entropy(outputs[i], inputs[i + 1], 0)
         for i in range(len(outputs))
     ]
     return F.batch.mean(F.sum(losses))