示例#1
0
def test_init_ok(config):
    corpus = pd.read_csv("test/minimal.csv")

    configuration = Configuration(None,
                                  is_dict_config=True,
                                  dict_config=config)

    writer = CsvWriter(configuration, "recipe_csv_writer")

    data_object = DataObject(configuration)
    requestor = CsvReader(configuration, "csv_reader")
    data_object.add(requestor, key="test_data", data=corpus)

    c = configuration.config_for_instance(
        "recipe_csv_writer"
    )  # configuration.sec .writer_config['recipe_csv_writer']
    filename = c["dir"] + os.path.sep + c["filename"]

    # clean out test file location
    if os.path.exists(filename):
        os.remove(filename)

    writer.run(data_object)

    assert os.path.exists(filename)

    df = pd.read_csv(filename)

    assert corpus.equals(df)
def test_transform():
    config = {
        "implementation_config": {
            "reader_config": {
                "myreader_left": {
                    "class": "CsvReader",
                    "filename": "test/minimal.csv",
                    "destinations": ["mypipeline"],
                },
                "myreader_right": {
                    "class": "CsvReader",
                    "filename": "test/merge_right3.csv",
                    "destinations": ["mypipeline"],
                },
            },
            "pipeline_config": {
                "mypipeline": {
                    "class": "DataFrameJoiner",
                    "join_key": ["first"],
                    "start_table": "myreader_left",
                    "is_training": True,
                }
            },
        }
    }
    configuration = Configuration(
        config_location=None, is_dict_config=True, dict_config=config
    )

    data_object = DataObject(configuration)

    left_df = pd.read_csv("test/minimal.csv")
    reader_left = CsvReader(configuration, "myreader_left")
    data_object.add(reader_left, left_df)

    right_df = pd.read_csv("test/merge_right3.csv")
    reader_right = CsvReader(configuration, "myreader_right")
    data_object.add(reader_right, right_df)

    pipeline = DataFrameJoiner(configuration, "mypipeline")

    data_object, terminate = pipeline.run(data_object)

    assert not terminate

    joined_data = data_object.get(
        "mypipeline", pop_data=True, rtype=DataObjectResponseType.VALUE.value
    )
    assert joined_data.shape[0] == 2

    assert list(joined_data.T.to_dict().values())[0] == {
        "first": "joe",
        "last": "doe",
        "age": 47,
    }
    assert list(joined_data.T.to_dict().values())[1] == {
        "first": "mary",
        "last": "poppins",
        "age": 42,
    }
示例#3
0
def test_init_other_ok(config):
    config["implementation_config"]["writer_config"]["recipe_file_writer"][
        "filename"] = "unittest_file_writer.other"
    config["implementation_config"]["writer_config"]["recipe_file_writer"][
        "serializer"] = "other"

    test_data_string = "some test data"

    configuration = Configuration(None,
                                  is_dict_config=True,
                                  dict_config=config)

    data_object = DataObject(configuration)

    requestor = CsvReader(configuration, "csv_reader")

    data_object.add(requestor, test_data_string, "test_data")

    writer = Serializer(configuration, "recipe_file_writer")

    c = configuration.config_for_instance("recipe_file_writer")
    filename = c["dir"] + os.path.sep + c["filename"]

    # clean out test file location
    if os.path.exists(filename):
        os.remove(filename)

    with pytest.raises(Exception, match=r"Unsupported"):
        writer.run(data_object)
示例#4
0
def test_init_ok(config):

    test_data_string = "some test data"

    configuration = Configuration(None,
                                  is_dict_config=True,
                                  dict_config=config)

    data_object = DataObject(configuration)

    requestor = CsvReader(configuration, "csv_reader")

    data_object.add(requestor, test_data_string, "test_data")

    writer = FileWriter(configuration, "recipe_file_writer")

    c = configuration.config_for_instance("recipe_file_writer")
    filename = c["dir"] + os.path.sep + c["filename"]

    # clean out test file location
    if os.path.exists(filename):
        os.remove(filename)

    data_object, terminate = writer.run(data_object)

    assert not terminate

    assert os.path.exists(filename)

    read_data = open(filename).read()

    assert test_data_string == read_data
def data_obj(config):
    df = pd.read_csv("test/tennis.csv")
    data_object = DataObject(config)
    reader = CsvReader(config, "read_data")
    data_object.add(reader, df)
    encoder = EncodeTrainTestSplit(config, "encode_and_split")
    data_object, terminate = encoder.run(data_object)
    return data_object
    def data_object_factory():
        df = pd.read_csv("test/tennis.csv")

        data_object = DataObject(configuration)

        csv_reader = CsvReader(configuration, "read_data")

        data_object.add(csv_reader, df)

        return data_object
示例#7
0
def test_create_data_object():

    filename = "dag_runner_create_data_object.pkl"
    # hack part 1: make sure this filename exists so that checks in Configuration pass
    open(filename, "w+")

    config = {
        "metadata": {
            "data_object": {
                "read_from_cache": True,
                "read_filename": "dag_runner_create_data_object.pkl",
            }
        },
        "implementation_config": {
            "reader_config": {
                "csv_reader": {
                    "class": "CsvReader",
                    "filename": "test/minimal.csv",
                    "destinations": [],
                }
            }
        },
    }
    configuration = Configuration(None,
                                  is_dict_config=True,
                                  dict_config=config)

    # hack part 2: now get rid of it
    if os.path.exists(filename):
        os.remove(filename)

    # now write the actual object to restore from
    data_object = DataObject(configuration)
    writer = CsvReader(configuration, "csv_reader")
    data_object.add(writer, "some_data")
    data_object.write_to_cache(filename)
    assert os.path.exists(filename)

    # now we get to the code to test
    runner = DagRunner(configuration)
    restored_data_object = runner.create_data_object()

    # run some checks
    assert isinstance(restored_data_object, DataObject)
    assert (restored_data_object.get(
        "csv_reader", rtype=DataObjectResponseType.VALUE.value) == "some_data")

    # cleanup
    if os.path.exists(filename):
        os.remove(filename)
示例#8
0
def test_get_upstream_data4():
    config = {
        "implementation_config": {
            "reader_config": {
                "csv_reader1": {
                    "class": "CsvReader",
                    "filename": "test/minimal.csv",
                    "destinations": ["recipe_s3_writer"],
                },
                "csv_reader2": {
                    "class": "CsvReader",
                    "filename": "test/minimal.csv",
                    "destinations": ["recipe_s3_writer"],
                },
            },
            "writer_config": {
                "recipe_s3_writer": {
                    "class": "S3Writer",
                    "dir": "cache",
                    "key": "data",
                    "bucket_name": "does_not_exist_bucket_name",
                    "bucket_filename": "does_not_exist.csv",
                }
            },
        }
    }

    configuration = Configuration(None, is_dict_config=True, dict_config=config)

    data_object = DataObject(configuration)

    reader1 = CsvReader(configuration, "csv_reader1")
    reader2 = CsvReader(configuration, "csv_reader2")

    data_object.add(reader1, "data1")
    data_object.add(reader2, "data2")

    response = data_object.get_upstream_data("recipe_s3_writer")
    assert isinstance(response, dict)
    assert "csv_reader1" in response
    assert "csv_reader2" in response
    assert response["csv_reader1"][DataObject.DATA_KEY] == "data1"
    assert response["csv_reader2"][DataObject.DATA_KEY] == "data2"

    response = data_object.get_upstream_data("recipe_s3_writer")
    assert isinstance(response, dict)
    assert response["csv_reader1"][DataObject.DATA_KEY] == "data1"
    assert response["csv_reader2"][DataObject.DATA_KEY] == "data2"
def test_concatenate_data(pipeline_obj, configuration):

    df1 = pd.read_csv("test/tennis.csv")
    df2 = pd.read_csv("test/tennis.csv")

    data_object = DataObject(configuration)
    csv_reader = CsvReader(configuration, "read_data")

    data_object.add(csv_reader, df1, "query1")
    data_object.add(csv_reader, df2, "query2")

    data_object, terminate = pipeline_obj.run(data_object)

    encoded_data = data_object.get("encode_and_split")["data_train"]

    assert len(encoded_data) == 18
def test_transform2():
    config = {
        "implementation_config": {
            "reader_config": {
                "myreader_left": {
                    "class": "CsvReader",
                    "filename": "test/minimal.csv",
                    "destinations": ["mypipeline"],
                },
                "myreader_right": {
                    "class": "CsvReader",
                    "filename": "test/merge_right3.csv",
                    "destinations": ["mypipeline"],
                },
            },
            "pipeline_config": {
                "mypipeline": {
                    "class": "DataFrameJoiner",
                    "join_key": ["first"],
                    "start_table": "JUNK",
                    "is_training": True,
                }
            },
        }
    }
    configuration = Configuration(
        config_location=None, is_dict_config=True, dict_config=config
    )

    data_object = DataObject(configuration)

    left_df = pd.read_csv("test/minimal.csv")
    reader_left = CsvReader(configuration, "myreader_left")

    right_df = pd.read_csv("test/merge_right3.csv")
    reader_right = CsvReader(configuration, "myreader_right")

    # note: am deliberately swapping order to right is first
    data_object.add(reader_right, right_df)
    data_object.add(reader_left, left_df)

    pipeline = DataFrameJoiner(configuration, "mypipeline")

    with pytest.raises(Exception) as e:
        pipeline.run(data_object)
    assert "Could not find start_table in upstream keys: JUNK" in str(e)
示例#11
0
def test_get_filtered_multiple_upstream_data():
    config = {
        "implementation_config": {
            "reader_config": {
                "csv_reader1": {
                    "class": "CsvReader",
                    "filename": "test/minimal.csv",
                    "destinations": ["recipe_s3_writer"],
                },
                "csv_reader2": {
                    "class": "CsvReader",
                    "filename": "test/minimal.csv",
                    "destinations": ["recipe_s3_writer"],
                },
            },
            "writer_config": {
                "recipe_s3_writer": {
                    "class": "S3Writer",
                    "dir": "cache",
                    "key": "data",
                    "bucket_name": "does_not_exist_bucket_name",
                    "bucket_filename": "does_not_exist.csv",
                }
            },
        }
    }

    configuration = Configuration(None, is_dict_config=True, dict_config=config)

    data_object = DataObject(configuration)

    reader1 = CsvReader(configuration, "csv_reader1")
    reader2 = CsvReader(configuration, "csv_reader2")

    data_object.add(reader1, "some_data_to_save")
    data_object.add(reader2, "some_data_to_save")

    data = data_object.get_filtered_upstream_data("recipe_s3_writer", "data")
    assert data == [{"data": "some_data_to_save"}, {"data": "some_data_to_save"}]
    assert isinstance(data, list)

    data = data_object.get_filtered_upstream_data("recipe_s3_writer", "JUNK")
    assert not data
示例#12
0
def test_cache_data_object():
    config = {
        "metadata": {
            "data_object": {
                "write_to_cache": True,
                "write_filename": "dag_runner_test_cache_data_object.pkl",
            }
        },
        "implementation_config": {
            "reader_config": {
                "csv_reader": {
                    "class": "CsvReader",
                    "filename": "test/minimal.csv",
                    "destinations": [],
                }
            }
        },
    }
    configuration = Configuration(None,
                                  is_dict_config=True,
                                  dict_config=config)

    data_object = DataObject(configuration)
    writer = CsvReader(configuration, "csv_reader")
    data_object.add(writer, "some_data")

    runner = DagRunner(configuration)

    filename = "dag_runner_test_cache_data_object.pkl"
    if os.path.exists(filename):
        os.remove(filename)

    cached = runner.cache_data_object(data_object)

    assert cached

    assert os.path.exists(filename)

    if os.path.exists(filename):
        os.remove(filename)
示例#13
0
def test_caching():
    config = {
        "implementation_config": {
            "reader_config": {
                "csv_reader": {
                    "class": "CsvReader",
                    "filename": "test/minimal.csv",
                    "destinations": [],
                }
            }
        }
    }
    configuration = Configuration(None, is_dict_config=True, dict_config=config)
    data_object = DataObject(configuration)

    writer = CsvReader(configuration, "csv_reader")

    data_object.add(writer, "some_data")

    filename = "test_data_object_cache.pkl"
    if os.path.exists(filename):
        os.remove(filename)

    data_object.write_to_cache(filename)

    assert os.path.exists(filename)

    restored_data_object = DataObject.read_from_cache(filename)

    assert isinstance(restored_data_object, DataObject)

    assert (
        restored_data_object.get("csv_reader", rtype=DataObjectResponseType.VALUE.value)
        == "some_data"
    )

    if os.path.exists(filename):
        os.remove(filename)
示例#14
0
def test_init_pickle_ok(config):
    config["implementation_config"]["writer_config"]["recipe_file_writer"][
        "filename"] = "unittest_file_writer.pickle"
    config["implementation_config"]["writer_config"]["recipe_file_writer"][
        "serializer"] = "pickle"

    test_data_string = "some test data"

    configuration = Configuration(None,
                                  is_dict_config=True,
                                  dict_config=config)

    data_object = DataObject(configuration)

    requestor = CsvReader(configuration, "csv_reader")

    data_object.add(requestor, test_data_string, "test_data")

    writer = Serializer(configuration, "recipe_file_writer")

    c = configuration.config_for_instance("recipe_file_writer")
    filename = c["dir"] + os.path.sep + c["filename"]

    # clean out test file location
    if os.path.exists(filename):
        os.remove(filename)

    data_object, terminate = writer.run(data_object)

    assert not terminate

    assert os.path.exists(filename)

    read_data = pickle.load(open(filename, "rb"))

    assert test_data_string == read_data
示例#15
0
def test_run():
    class TestPipeline(AbstractPipeline):
        def transform(self, data_object):
            logging.info("TRANSFORM CALLED")
            return data_object

        def fit_transform(self, data_object):
            logging.info("FIT_TRANSFORM CALLED")
            return self.transform(data_object)

        @staticmethod
        def necessary_config(node_config):
            return set(["is_training"])

    NodeFactory().register("TestPipeline", TestPipeline)

    config = {
        "implementation_config": {
            "reader_config": {
                "myreader": {
                    "class": "CsvReader",
                    "filename": "test/minimal.csv",
                    "destinations": ["mypipeline"],
                }
            },
            "pipeline_config": {
                "mypipeline": {
                    "class": "TestPipeline",
                    "is_training": True
                }
            },
        }
    }
    configuration = Configuration(config_location=None,
                                  is_dict_config=True,
                                  dict_config=config)

    reference_file_path = "test/minimal.csv"
    corpus = pd.read_csv(reference_file_path)

    reader = CsvReader(configuration, "myreader")

    data_object = DataObject(configuration)
    data_object.add(reader, corpus)

    pipeline = TestPipeline(configuration, "mypipeline")

    with LogCapture() as l:
        pipeline.run(data_object)
    l.check(
        (
            "root",
            "INFO",
            "No upstream TransformerSequence found. Creating new TransformerSequence...",
        ),
        ("root", "INFO", "FIT_TRANSFORM CALLED"),
        ("root", "INFO", "TRANSFORM CALLED"),
    )

    data_object.add(reader, TransformerSequence(), "tsequence")
    with LogCapture() as l:
        pipeline.run(data_object)
    l.check(
        (
            "root",
            "INFO",
            "Upstream TransformerSequence found, initializing pipeline...",
        ),
        ("root", "INFO", "FIT_TRANSFORM CALLED"),
        ("root", "INFO", "TRANSFORM CALLED"),
    )

    config["implementation_config"]["pipeline_config"]["mypipeline"][
        "is_training"] = False
    configuration = Configuration(config_location=None,
                                  is_dict_config=True,
                                  dict_config=config)
    reader = CsvReader(configuration, "myreader")
    data_object = DataObject(configuration)
    data_object.add(reader, corpus)
    pipeline = TestPipeline(configuration, "mypipeline")
    with LogCapture() as l:
        pipeline.run(data_object)
    l.check(
        (
            "root",
            "INFO",
            "No upstream TransformerSequence found. Creating new TransformerSequence...",
        ),
        ("root", "INFO", "TRANSFORM CALLED"),
    )
示例#16
0
def test_init_ok():
    config = {
        "implementation_config": {
            "postprocess_config": {
                "nodename": {
                    "class": "TestPostprocess",
                    "key1": "val1",
                    "key2": "val2",
                    "destinations": ["recipe_s3_writer"],
                }
            },
            "writer_config": {
                "recipe_s3_writer": {
                    "class": "S3Writer",
                    "dir": "cache",
                    "key": DataObject.DATA_KEY,
                    "bucket_name": "does_not_exist_bucket_name",
                    "bucket_filename": "does_not_exist.csv",
                }
            },
        }
    }

    class TestPostprocess(AbstractNode):
        @staticmethod
        def necessary_config(node_config):
            return set(["key1", "key2"])

        def run(self, data_object):
            return data_object

    NodeFactory().register("TestPostprocess", TestPostprocess)

    # this is to mock out the boto connection
    os.environ["AWS_ACCESS_KEY_ID"] = "fake"
    os.environ["AWS_SECRET_ACCESS_KEY"] = "fake"
    conn = boto3.resource("s3")
    # We need to create the bucket since this is all in Moto's 'virtual' AWS account
    conn.create_bucket(Bucket="does_not_exist_bucket_name")

    reference_file_path = "test/minimal.csv"

    corpus = pd.read_csv(reference_file_path)

    configuration = Configuration(None,
                                  is_dict_config=True,
                                  dict_config=config)

    data_object = DataObject(configuration)

    requestor = TestPostprocess(configuration, "nodename")

    data_object.add(requestor, corpus)

    writer = S3Writer(configuration, "recipe_s3_writer")
    node_config = {
        "class": "S3Writer",
        "dir": "cache",
        "key": DataObject.DATA_KEY,
        "bucket_name": "does_not_exist_bucket_name",
        "bucket_filename": "does_not_exist.csv",
    }
    keys = writer.necessary_config(node_config)
    assert keys is not None
    assert isinstance(keys, set)
    assert len(keys) > 0

    # write to file
    filename = writer._write_locally(data_object)
    assert os.path.exists(filename)

    # check it is same data as expected
    reference = pd.read_csv(reference_file_path)
    just_written = pd.read_csv(filename)

    assert reference.equals(just_written)

    os.remove(filename)

    data_object = writer.run(data_object)
    body = (conn.Object(
        "does_not_exist_bucket_name",
        "does_not_exist.csv").get()["Body"].read().decode("utf-8"))
    assert body == open(reference_file_path).read()
示例#17
0
def test_run():
    class TestModel(AbstractModel):
        @staticmethod
        def necessary_config(node_config):
            return set(["mode"])

        def train_model(self, data_object):
            logging.info("TRAIN called")
            return data_object

        def eval_model(self, data_object):
            logging.info("EVAL called")
            return data_object

        def predict(self, data_object):
            logging.info("PREDICT called")
            return data_object

    NodeFactory().register("TestModel", TestModel)

    config = {
        "implementation_config": {
            "reader_config": {
                "myreader": {
                    "class": "CsvReader",
                    "filename": "test/minimal.csv",
                    "destinations": ["mymodel"],
                }
            },
            "model_config": {
                "mymodel": {
                    "class": "TestModel",
                    "mode": "train"
                }
            },
        }
    }
    configuration = Configuration(config_location=None,
                                  is_dict_config=True,
                                  dict_config=config)

    data_object = DataObject(configuration)

    reader = CsvReader(configuration, "myreader")
    df = pd.read_csv("test/minimal.csv")

    data_object.add(reader, df)

    model = TestModel(configuration, "mymodel")

    with LogCapture() as l:
        model.run(data_object)
    l.check(
        ("root", "INFO", "TRAIN called"),
        ("root", "INFO", "EVAL called"),
        ("root", "INFO", "PREDICT called"),
    )

    config = {
        "implementation_config": {
            "reader_config": {
                "myreader": {
                    "class": "CsvReader",
                    "filename": "test/minimal.csv",
                    "destinations": ["mymodel"],
                }
            },
            "model_config": {
                "mymodel": {
                    "class": "TestModel",
                    "mode": "eval"
                }
            },
        }
    }
    configuration = Configuration(config_location=None,
                                  is_dict_config=True,
                                  dict_config=config)

    data_object = DataObject(configuration)

    reader = CsvReader(configuration, "myreader")

    data_object.add(reader, df)

    model = TestModel(configuration, "mymodel")

    with LogCapture() as l:
        model.run(data_object)
    l.check(("root", "INFO", "EVAL called"),
            ("root", "INFO", "PREDICT called"))
示例#18
0
def test_execute_pipeline():
    class TestTransformer(AbstractTransformer):
        def fit(self, data):
            logging.info("Transfer FIT CALLED")

        def transform(self, data):
            logging.info("Transfer TRANSFORM CALLED")
            return data

        def fit_transform(self, data):
            logging.info("Transfer FIT_TRANSFORM CALLED")
            self.fit(data)
            return self.transform(data)

    class TestPipeline2(AbstractPipeline):
        def transform(self, data_object):
            return data_object

        @staticmethod
        def necessary_config(node_config):
            return set(["is_training"])

    NodeFactory().register("TestPipeline2", TestPipeline2)

    config = {
        "implementation_config": {
            "reader_config": {
                "myreader": {
                    "class": "CsvReader",
                    "filename": "test/minimal.csv",
                    "destinations": ["mypipeline"],
                }
            },
            "pipeline_config": {
                "mypipeline": {
                    "class": "TestPipeline",
                    "is_training": True
                }
            },
        }
    }
    configuration = Configuration(config_location=None,
                                  is_dict_config=True,
                                  dict_config=config)

    reference_file_path = "test/minimal.csv"
    corpus = pd.read_csv(reference_file_path)

    reader = CsvReader(configuration, "myreader")

    data_object = DataObject(configuration)
    data_object.add(reader, corpus)

    sequence = TransformerSequence()
    sequence.add(TestTransformer())
    data_object.add(reader, sequence, "tsequence")

    pipeline = TestPipeline2(configuration, "mypipeline")

    with pytest.raises(Exception) as e:
        pipeline.execute_pipeline(corpus, PipelineModeType.FIT)
    assert "run() must be called to extract/create a TransformerSequence" in str(
        e)

    pipeline.run(data_object)

    with pytest.raises(Exception) as e:
        pipeline.execute_pipeline(corpus, "JUNK")
    assert "mode must be of type PipelineModeType Enum object." in str(e)

    with LogCapture() as l:
        pipeline.execute_pipeline(corpus, PipelineModeType.FIT)
    l.check(("root", "INFO", "Transfer FIT CALLED"))

    with LogCapture() as l:
        pipeline.execute_pipeline(corpus, PipelineModeType.FIT_TRANSFORM)
    l.check(
        ("root", "INFO", "Transfer FIT_TRANSFORM CALLED"),
        ("root", "INFO", "Transfer FIT CALLED"),
        ("root", "INFO", "Transfer TRANSFORM CALLED"),
    )
def test_cosine_similarity_matrix():
    class Testpipeline(AbstractNode):
        def __init__(self, configuration, instance_name):
            self.configuration = configuration
            self.instance_name = instance_name

        @staticmethod
        def necessary_config(node_config):
            return set([])

        def run(self, data_object):
            return data_object, False

    NodeFactory().register("Testpipeline", Testpipeline)

    class TestSimpleSearchEngine(AbstractSearchEngine):
        """
        simple TFIDF search engine
        """
        def __init__(self, configuration, instance_name):
            AbstractSearchEngine.__init__(self, configuration, instance_name)

        def tokenize(self, s, stopwords=[], add_ngrams=True):
            q = s.lower()
            tokens = (q.replace("-", " ").replace(",",
                                                  "").replace("(", "").replace(
                                                      ")", "").split(" "))
            tokens = [w for w in tokens if w not in stopwords]
            if add_ngrams:
                bigrams = list(ngrams(tokens, 2))
                strbigrams = ["_".join(t) for t in bigrams]
                tokens.extend(strbigrams)
            return tokens

        def eval_model(data_object):
            return data_object

    NodeFactory().register("TestSimpleSearchEngine", TestSimpleSearchEngine)

    config = {
        "implementation_config": {
            "pipeline_config": {
                "pipeline1": {
                    "class": "Testpipeline",
                    "destinations": ["recipe_name_model"],
                }
            },
            "model_config": {
                "recipe_name_model": {
                    "class": "TestSimpleSearchEngine",
                    "id_key": "id",
                    "doc_key": "name",
                    "mode": "precict",
                    "destinations": [],
                }
            },
        }
    }

    configuration = Configuration(None,
                                  is_dict_config=True,
                                  dict_config=config)

    # set that pipeline provided the corpus
    corpus = [
        {
            "id": 1,
            "name": "spinach omelet"
        },
        {
            "id": 2,
            "name": "kale omelet"
        },
        {
            "id": 3,
            "name": "cherry pie"
        },
    ]
    data_object = DataObject(configuration)
    pipeline = Testpipeline(configuration, "pipeline1")
    data_object.add(pipeline, pd.DataFrame(corpus))

    engine = TestSimpleSearchEngine(configuration, "recipe_name_model")
    engine.predict(data_object)

    m = engine.cosine_similarity_matrix()

    assert math.isclose(m[0, 0], 1.0, abs_tol=0.001)
    assert math.isclose(m[0, 1], 0.224325, abs_tol=0.001)
    assert math.isclose(m[0, 2], 0.0, abs_tol=0.001)

    assert math.isclose(m[1, 0], 0.224325, abs_tol=0.001)
    assert math.isclose(m[1, 1], 1.0, abs_tol=0.001)
    assert math.isclose(m[1, 2], 0.0, abs_tol=0.001)

    assert math.isclose(m[2, 0], 0.0, abs_tol=0.001)
    assert math.isclose(m[2, 1], 0.0, abs_tol=0.001)
    assert math.isclose(m[2, 2], 1.0, abs_tol=0.001)

    assert engine.ids == [1, 2, 3]
    assert engine.docs == ["spinach omelet", "kale omelet", "cherry pie"]
    assert engine.tfidf is not None