示例#1
0
 def compute_path(self, start, goal):
     # Implementation of the A* algorithm.
     closed_set = {}
     
     start_node = self._Node(start)
     start_node.g_cost = 0
     start_node.f_cost = self._compute_f_cost(start_node, goal)
     
     open_set = PriorityQueueSet()
     open_set.add(start_node)
     
     while len(open_set) > 0:
         # Remove and get the node with the lowest f_score from  the open set            
         curr_node = open_set.pop_smallest()
         
         if curr_node.coord == goal:
             return self._reconstruct_path(curr_node)
         
         closed_set[curr_node] = curr_node
         
         for succ_coord in self.successors(curr_node.coord):
             succ_node = self._Node(succ_coord)
             succ_node.g_cost = self._compute_g_cost(curr_node, succ_node)
             succ_node.f_cost = self._compute_f_cost(succ_node, goal)
             
             if succ_node in closed_set:
                 continue
                
             if open_set.add(succ_node):
                 succ_node.pred = curr_node
     
     return []
示例#2
0
    def compute_path(self, start, goal):
        # Implementation of the A* algorithm.
        closed_set = {}

        start_node = self._Node(start)
        start_node.g_cost = 0
        start_node.f_cost = self._compute_f_cost(start_node, goal)

        open_set = PriorityQueueSet()
        open_set.add(start_node)

        while len(open_set) > 0:
            # Remove and get the node with the lowest f_score from  the open set
            curr_node = open_set.pop_smallest()

            if curr_node.coord == goal:
                return self._reconstruct_path(curr_node)

            closed_set[curr_node] = curr_node

            for succ_coord in self.successors(curr_node.coord):
                succ_node = self._Node(succ_coord)
                succ_node.g_cost = self._compute_g_cost(curr_node, succ_node)
                succ_node.f_cost = self._compute_f_cost(succ_node, goal)

                if succ_node in closed_set:
                    continue

                if open_set.add(succ_node):
                    succ_node.pred = curr_node

        return []
示例#3
0
	def compute_path_until_PM(self, start, goal, movType = 0, PM = 7):
		# ======= Algoritmo A* =======
		closed_set = {}
		
		# Nodo inicial
		start_node = self._Node(start.pos, start.face)
		start_node.g_cost = 0
		start_node.f_cost = self._compute_f_cost(start_node, goal)
		
		open_set = PriorityQueueSet()
		open_set.add(start_node)
		
		while len(open_set) > 0:
			# Extrae el nodo con mínimo f_score de open_set
			curr_node = open_set.pop_smallest()
			#~ print curr_node
			# Comprobamos si hemos alcanzado goal y orientamos el valor de face
			#~ print " Comp ",curr_node.coord," Con ",goal.pos
			if curr_node.coord == goal.pos:
				#~ print "Hemos alcanzado GOAL"
				if curr_node.face != goal.face:
					# Corregimos el valor de curr_node.face
					new = self._Node(curr_node.coord, goal.face, curr_node.g_cost+abs(curr_node.face - goal.face) , 0, curr_node)
					# PATH ENCONTRADO
					return self._reconstruct_path_until_PM(new, PM)
				else:
					# PATH ENCONTRADO
					return self._reconstruct_path_until_PM(curr_node, PM)
			
			# Si no es goal, obtenemos los sucesores del nodo.
			closed_set[curr_node] = curr_node
			for succ_coord in self.successors(curr_node.coord,movType, PM):
				succ_node = self._Node(succ_coord)
				# A cada nodo sucesor le calculamos el g_cost y el f_cost
				(succ_node.g_cost, succ_node.face) = self._compute_g_cost(curr_node, succ_node, movType)
				succ_node.f_cost = self._compute_f_cost(succ_node, goal)
				
				if succ_node in closed_set:
					#~ if succ_node.g_cost <= 10:
					#~ print "Sucesor: ",succ_coord,"\nCoste G = ",succ_node.g_cost,"\nCoste F = ",succ_node.f_cost
					continue
				# Añadimos el nodo sucesor a open_set
				if open_set.add(succ_node):
					# Establecemos su predecesor
					#~ if succ_node.g_cost <= 10:
					#~ print "Sucesor: ",succ_coord,"\nCoste G = ",succ_node.g_cost,"\nCoste F = ",succ_node.f_cost
					succ_node.pred = curr_node
		# PATH NO ENCONTRADO
		#~ print "Cjto: ",closed_set.keys()
		#~ print "Path no encontrado"
		#~ return ([], False, 0)
		return self._reconstruct_path_until_PM(curr_node, 1)
示例#4
0
 def compute_path(self, start, goal):
     """ Compute the path between the 'start' point and the 
         'goal' point. 
         
         The path is returned as an iterator to the points, 
         including the start and goal points themselves.
         
         If no path was found, an empty list is returned.
     """
     #
     # Implementation of the A* algorithm.
     #
     closed_set = {}
     
     start_node = self._Node(start)
     goal_node = self._Node(goal)
     start_node.g_cost = 0
     start_node.f_cost = self._compute_f_cost(start_node, goal_node)
     
     open_set = PriorityQueueSet()
     open_set.add(start_node)
     
     while len(open_set) > 0:
         # Remove and get the node with the lowest f_score from 
         # the open set            
         #
         curr_node = open_set.pop_smallest()
         
         if curr_node.coord == goal_node.coord:
             return self._reconstruct_path(curr_node)
         
         closed_set[curr_node] = curr_node
         
         for succ_coord in self.successors(curr_node.coord):
             succ_node = self._Node(succ_coord)
             #original only considers this node and the next node
             #succ_node.g_cost = self._compute_g_cost(curr_node, succ_node)
             # we want to consider where we are coming from as well, so we
             # provide the parent node
             succ_node.g_cost = self._compute_g_cost(curr_node, succ_node,
                 curr_node.pred, start_node, goal_node)
             succ_node.f_cost = self._compute_f_cost(succ_node, goal_node)
             
             if succ_node in closed_set:
                 continue
                
             if open_set.add(succ_node):
                 succ_node.pred = curr_node
     
     return []
示例#5
0
 def compute_path(self, start, goal):
     """ Compute the path between the 'start' point and the 
         'goal' point. 
         
         The path is returned as an iterator to the points, 
         including the start and goal points themselves.
         
         If no path was found, an empty list is returned.
     """
     #
     # Implementation of the A* algorithm.
     #
     closed_set = {}
     
     start_node = self._Node(start)
     goal_node = self._Node(goal)
     start_node.g_cost = 0
     start_node.f_cost = self._compute_f_cost(start_node, goal_node)
     
     open_set = PriorityQueueSet()
     open_set.add(start_node)
     
     while len(open_set) > 0:
         # Remove and get the node with the lowest f_score from 
         # the open set            
         #
         curr_node = open_set.pop_smallest()
         
         if curr_node.coord == goal_node.coord:
             return self._reconstruct_path(curr_node)
         
         closed_set[curr_node] = curr_node
         
         for succ_coord in self.successors(curr_node.coord):
             succ_node = self._Node(succ_coord)
             #original only considers this node and the next node
             #succ_node.g_cost = self._compute_g_cost(curr_node, succ_node)
             # we want to consider where we are coming from as well, so we
             # provide the parent node
             succ_node.g_cost = self._compute_g_cost(curr_node, succ_node,
                 curr_node.pred, start_node, goal_node)
             succ_node.f_cost = self._compute_f_cost(succ_node, goal_node)
             
             if succ_node in closed_set:
                 continue
                
             if open_set.add(succ_node):
                 succ_node.pred = curr_node
     
     return []
示例#6
0
 def compute_path(self, start, goal):
     """ Compute the path between the 'start' point and the 
         'goal' point. 
         
         The path is returned as an iterator to the points, 
         including the start and goal points themselves.
         
         If no path was found, an empty list is returned.
     """
     #
     # Implementation of the A* algorithm.
     #
     closed_set = {}
     
     start_node = self._Node(start)
     start_node.g_cost = 0
     start_node.f_cost = self._compute_f_cost(start_node, goal)
     
     open_set = PriorityQueueSet()
     open_set.add(start_node)
     
     while len(open_set) > 0:
         # Remove and get the node with the lowest f_score from 
         # the open set            
         #
         
         if len(open_set) > 100:
             t2 = time.clock()
             timeWasted = t2 - self.t1 
             raise ValueError('path too long, wasted %f sec' % timeWasted)
         
         curr_node = open_set.pop_smallest()
         
         if curr_node.coord == goal:
             return self._reconstruct_path(curr_node)
         
         closed_set[curr_node] = curr_node
         
         for succ_coord in self.successors(curr_node.coord):
             succ_node = self._Node(succ_coord)
             succ_node.g_cost = self._compute_g_cost(curr_node, succ_node)
             succ_node.f_cost = self._compute_f_cost(succ_node, goal)
             
             if succ_node in closed_set:
                 continue
                
             if open_set.add(succ_node):
                 succ_node.pred = curr_node
     
     return []
示例#7
0
 def compute_path_until_PM(self, start, goal, movType = 0, PM = 7): 
     """ Compute the path between the 'start' point and the  
         'goal' point.  
          
         The path is returned as an iterator to the points,  
         including the start and goal points themselves. 
          
         If no path was found, an empty list is returned.
     """ 
     # 
     # Implementation of the A* algorithm. 
     # 
     closed_set = {} 
      
     start_node = self._Node(start.pos, start.face) 
     start_node.g_cost = 0 
     start_node.f_cost = self._compute_f_cost(start_node, goal) 
      
     open_set = PriorityQueueSet() 
     open_set.add(start_node) 
      
     while len(open_set) > 0: 
         # Remove and get the node with the lowest f_score from  
         # the open set             
         # 
         curr_node = open_set.pop_smallest()
         # If we reached the tarjet  Take care of END FACE 
         if curr_node.coord == goal.pos: 
             if curr_node.face != goal.face:
                 new = self._Node(curr_node.coord, goal.face, curr_node.g_cost+abs(curr_node.face - goal.face) , 0, curr_node)
                 return self._reconstruct_path_until_PM(new, PM)
             else:
                 return self._reconstruct_path_until_PM(curr_node, PM)
             
         closed_set[curr_node] = curr_node            
         for succ_coord in self.successors(curr_node.coord,movType, PM): 
             succ_node = self._Node(succ_coord) 
             (succ_node.g_cost, succ_node.face) = self._compute_g_cost(curr_node, succ_node, movType) 
             succ_node.f_cost = self._compute_f_cost(succ_node, goal) 
                       
             if succ_node in closed_set: 
                 continue 
                 
             if open_set.add(succ_node): 
                 succ_node.pred = curr_node 
      
     return [], False, 0
示例#8
0
 def compute_path(self, start, goal):
     """ Compute the path between the 'start' point and the 
         'goal' point. 
         
         The path is returned as an iterator to the points, 
         including the start and goal points themselves.
         
         If no path was found, an empty list is returned.
     """
     #
     # Implementation of the A* algorithm.
     #
     closed_set = {}
     
     start_node = self._Node(start)
     start_node.g_cost = 0
     start_node.f_cost = self._compute_f_cost(start_node, goal)
     
     open_set = PriorityQueueSet()
     open_set.add(start_node)
     while len(open_set) > 0:
         # Remove and get the node with the lowest f_score from 
         # the open set            
         #
         curr_node = open_set.pop_smallest()
         #logging.debug("Checking successors for node: {0}".format(curr_node))
         
         if curr_node.coord == goal:
             return self._reconstruct_path(curr_node)
         
         closed_set[curr_node] = curr_node
         
         for succ_coord in self.successors(curr_node.coord):
             succ_node = self._Node(succ_coord)
             succ_node.g_cost = self._compute_g_cost(curr_node, succ_node)
             succ_node.f_cost = self._compute_f_cost(succ_node, goal)
             
             if succ_node in closed_set:
                 continue
                
             if open_set.add(succ_node):
                 succ_node.pred = curr_node
     
     return []
示例#9
0
文件: astar.py 项目: nowl/games
    def best_path(self, posA, posB):
        results = []
        closedList = []
        openList = PriorityQueueSet()

        startNode = Node(posA)
        endNode = Node(posB)

        # if start node or end node is impassable then this can not
        # happen
        if self.impassablePred(posA) or self.impassablePred(posB):
            return []

        startNode.costFromStart = self.costFunc(posA)
        startNode.totalCost = startNode.costFromStart

        reachedEndNode = False
        pathEndNode = None

        # add start node to the open list
        openList.add(startNode, (startNode.totalCost, startNode.costFromStart))

        while len(openList) > 0:
            # logging.debug('------------------------------')
            # logging.debug('open: %s' % str(openList))
            # logging.debug('closed: %s' % str(closedList))

            node = openList.pop()

            # check if rNode is the end point, if so then we are done
            if node == endNode:
                reachedEndNode = True
                pathEndNode = node
                break

            closedList.append(node)

            # logging.debug('node: %s' % str(node))

            adjacencies = self.adjacenciesFunc(node.elem)

            for r in adjacencies:

                # first check if impassable, if so then skip
                if self.impassablePred(r):
                    continue

                h = self.heuristicCostFunc(r, posB)
                g = node.costFromStart + self.costFunc(r)
                f = g + h
                rNode = Node(r, parent=node, totalCost=f, costFromStart=g)

                # check if rNode is already in the closed list and if
                # so then ignore it
                if rNode in closedList:
                    continue

                # check if rNode is already in the open list and if so
                # then if it's G cost is better or the same then skip
                # to next node
                if rNode in openList:
                    olNodeCost = openList.get(rNode)[1]
                    if olNodeCost <= rNode.costFromStart:
                        continue

                # add rNode to the open list
                openList.add(rNode, (rNode.totalCost, rNode.costFromStart))

        # backtrack and copy results into the results buffer
        if reachedEndNode:
            n = pathEndNode
            while n:
                results.append(n.elem)
                n = n.parent

        # return it in the forward order
        results.reverse()
        return results
示例#10
0
文件: astar.py 项目: nowl/deforium
    def best_path(self, posA, posB):
        results = []
        closedList = []
        openList = PriorityQueueSet()

        startNode = Node(posA)
        endNode = Node(posB)

        # if start node or end node is impassable then this can not
        # happen
        if self.impassablePred(posA) or self.impassablePred(posB):
            return []

        startNode.costFromStart = self.costFunc(posA)
        startNode.totalCost = startNode.costFromStart

        reachedEndNode = False
        pathEndNode = None

        # add start node to the open list
        openList.add(startNode, (startNode.totalCost, startNode.costFromStart))

        while len(openList) > 0:
            #logging.debug('------------------------------')
            #logging.debug('open: %s' % str(openList))
            #logging.debug('closed: %s' % str(closedList))

            node = openList.pop()

            # check if rNode is the end point, if so then we are done
            if node == endNode:
                reachedEndNode = True
                pathEndNode = node
                break

            closedList.append(node)

            #logging.debug('node: %s' % str(node))

            adjacencies = self.adjacenciesFunc(node.elem)

            for r in adjacencies:

                # first check if impassable, if so then skip
                if self.impassablePred(r):
                    continue

                h = self.heuristicCostFunc(r, posB)
                g = node.costFromStart + self.costFunc(r)
                f = g + h
                rNode = Node(r, parent=node, totalCost=f, costFromStart=g)

                # check if rNode is already in the closed list and if
                # so then ignore it
                if rNode in closedList:
                    continue

                # check if rNode is already in the open list and if so
                # then if it's G cost is better or the same then skip
                # to next node
                if rNode in openList:
                    olNodeCost = openList.get(rNode)[1]
                    if olNodeCost <= rNode.costFromStart:
                        continue

                # add rNode to the open list
                openList.add(rNode, (rNode.totalCost, rNode.costFromStart))

        # backtrack and copy results into the results buffer
        if reachedEndNode:
            n = pathEndNode
            while n:
                results.append(n.elem)
                n = n.parent

        # return it in the forward order
        results.reverse()
        return results