示例#1
0
def quad_filter(fcinv, fdiag, lmax, lcl, **kwargs):
    # CMB filtering

    fl = prjlib.loadocl(fcinv['o'], **kwargs)
    ol = prjlib.loadocl(fdiag['o'], **kwargs)
    xl = prjlib.loadocl(fcinv['x'], **kwargs)

    alp = np.zeros((3, lmax + 1))
    ocl = np.zeros((4, lmax + 1))
    ifl = np.zeros((3, lmax + 1))

    alp[1:3, 2:] = xl[1:3, 2:] / lcl[1:3, 2:]

    ocl[0, :] = ol[0, :]
    ocl[1:3, 2:] = fl[1:3, 2:] / alp[1:3, 2:]**2
    ocl[3, :] = ol[3, :]
    ifl[0, :] = lcl[0, :]
    ifl[1:3, 2:] = fl[1:3, 2:] / alp[1:3, 2:]

    return ocl, ifl
示例#2
0
            np.concatenate((pquad.eL[None, :], np.mean(cl[1:, :, :], axis=0),
                            np.std(cl[1:, :, :], axis=0))).T)


p, f, r = prjlib.init()
ps, fs, _ = prjlib.init(stype='lcmb', dodust='False')

#//// Reconstruction ////#
ow = False
#ow = True
snmax = p.snmax
if p.stype not in ['lcmb', 'dust']: snmax = 100

if p.stype in ['absrot', 'relrot', 'dust']:
    rdn0 = False
    ocl = prjlib.loadocl(fs.scl)
    quad_func.quad.diagcinv(ps.quad, ocl)
    quad_func.quad.diagcinv(p.quad, ocl)
    quad_func.quad.qrec(ps.quad,
                        p.snmin,
                        snmax,
                        f.alm,
                        r.lcl,
                        qout=p.quad,
                        overwrite=ow)
    if p.stype == 'dust':
        rdn0 = True
        quad_func.quad.rdn0(ps.quad,
                            p.snmin,
                            p.snmax,
                            f.alm,
示例#3
0
import prjlib
import quad_func
import binning as bins

p, f, r = prjlib.init(loadw=False)
p0, f0 = prjlib.filename_init(PSA='s14&15_deep56',
                              doreal='True',
                              dearot='True')
p1, f1 = prjlib.filename_init(PSA='s14&15_boss', doreal='True')
px, fx = prjlib.filename_init(PSA='s14&15_cross', doreal='True')
__, __, w1, __ = prjlib.window(f0)
__, __, w2, __ = prjlib.window(f1)
r.w4 = np.sqrt(w1 * w2)

#//// bias terms ////#
oc0 = prjlib.loadocl(f0.scl)
oc1 = prjlib.loadocl(f1.scl)
quad_func.quad.diagcinv(p0.quad, oc0)
quad_func.quad.diagcinv(p1.quad, oc1)
#quad_func.n0x(px.quad,p0.quad,p1.quad,f0.alm,f1.alm,r.w4,r.lcl)
#quad_func.rdn0x(px.quad,p0.quad,p1.quad,0,1,f0.alm,f1.alm,r.w4,r.lcl)

#//// Power spectrum ////#
oLmax = p.quad.oLmax
bn = p.quad.bn
binspc = p.quad.binspc

for q in p.quad.qlist:

    cl = np.zeros((p.snmax - p.snmin + 1, 1, oLmax + 1))
示例#4
0
def interface(freqs,kwargs_ov={},kwargs_cmb={},run=['map2alm','combfreq','wiener_iso','wiener_diag']):

    telescope = kwargs_cmb['t']
    snmin = kwargs_cmb['snmin']
    snmax = kwargs_cmb['snmax']
    ntype = kwargs_cmb['ntype']


    if 'hitmap' in run:

        output_hitmap(**kwargs_ov)
        

    if 'simmap' in run:

        if telescope in ['la','sa']:

            for freq in freqs:
                
                # signal sim
                sobj = sim_map(telescope=telescope,freq=freq,snmin=snmin,snmax=snmax,ntype='',**kwargs_ov)
                sim_map.SOsim(sobj)
                # noise sim
                sobj = sim_map(telescope=telescope,freq=freq,snmin=snmin,snmax=snmax,ntype=ntype,**kwargs_ov)
                sim_map.SOsim(sobj)


    if 'calcalm' in run:  # map -> alm for each freq (and com) and telescope

        if '_iso' in ntype:  
            # compute alms for isotropic noise
            # need pre-computed frequency-coadded spectrum 

            if kwargs_cmb['fltr'] != 'none':
                sys.exit('isotropic noise calculation is only valid for none-filtered case')
    
            if telescope in ['la','co']:

                # for isotropic noise spectrum and diagonal wiener filtering
                pc = prjlib.analysis_init(t=telescope,freq='com',snmin=snmin,snmax=snmax,ntype=ntype.replace('_iso',''))
                ncl = prjlib.loadocl(pc.fcmb.scl['n'],lTmin=pc.lTmin,lTmax=pc.lTmax)

                # setup filenames for input and output
                inp = prjlib.analysis_init(t='id',ntype='cv',snmin=snmin,snmax=snmax) # to use fullsky signal
                out = prjlib.analysis_init(t=telescope,freq='com',fltr='none',snmin=snmin,snmax=snmax,ntype=ntype)

                # alm and aps
                iso_noise(pc.rlz,pc.roll,pc.lmax,inp.fcmb.alms['o'],out.fcmb.alms['o'],ncl[0:3,:],**kwargs_ov)
                aps(pc.rlz,pc.lmax,out.fcmb,1.,stype=['o'],**kwargs_ov)

        else:

            if kwargs_cmb['fltr'] == 'none':

                if telescope == 'co':
                    sys.exit('does not support none filter case for LA+SA')
        
                if telescope == 'id': # map -> alm for fullsky case
                    stype = ['o']
                    ntype = 'cv'
                    freqs = ['145']
                else:
                    stype = ['s','n','o']

                # load survey window
                w, wn = prjlib.window(telescope,ascale=kwargs_cmb['ascale']) 
        
                # map -> alm for each freq
                for freq in freqs:
                    p = prjlib.analysis_init(t=telescope,freq=freq,snmin=snmin,snmax=snmax,ntype=ntype) # define parameters, filenames
                    map2alm(p.telescope,p.rlz,freq,p.nside,p.lmax,p.fcmb,w,roll=p.roll,**kwargs_ov) # map -> alm
                    aps(p.rlz,p.lmax,p.fcmb,wn[2],stype=stype,**kwargs_ov)

                # combine alm over freqs    
                if telescope in ['la','sa']:
                    p = prjlib.analysis_init(t=telescope,freq='com',snmin=snmin,snmax=snmax,ntype=ntype)
                    fmap = prjlib.filename_freqs(freqs,t=telescope,ntype=ntype)
                    alm_comb_freq(p.rlz,fmap,p.fcmb,roll=p.roll,**kwargs_ov)
                    aps(p.rlz,p.lmax,p.fcmb,wn[2],**kwargs_ov)


            elif kwargs_cmb['fltr'] == 'cinv':  # full wiener filtering

                if telescope == 'sa':
                    sys.exit('does not support cinv filter case for SA')

                pw = prjlib.analysis_init(t=telescope,freq='com',fltr='cinv',snmin=snmin,snmax=snmax,ntype=ntype)
                pI = prjlib.analysis_init(t='id',ntype='cv',snmin=snmin,snmax=snmax) # for cross
                wn = prjlib.wfac(telescope,binary=True)
        
                if telescope == 'la':

                    mtypes = ['T','E','B']

                    # filenames
                    fmap = prjlib.filename_freqs(freqs,t=telescope,ntype=ntype)
 
                    # Temperature
                    cinv_params = {\
                        'chn' : 7, \
                        'eps' : [1e-4,.1,.1,.1,.1,.1,0.], \
                        'lmaxs' : [4096,2048,2048,1024,512,256,20], \
                        'nsides' : [2048,2048,1024,512,256,128,64], \
                        'itns' : [100,5,5,5,5,5,0], \
                        'ro' : 1, \
                        'filter' : 'W' \
                    }
                    cinv(1,pw.rlz,telescope,4096,ntype,fmap,pw.fcmb.alms['o'],pw.lcl,freqs=freqs,**cinv_params,**kwargs_ov)

                    # Polarization
                    cinv_params = {\
                        'chn' : 6, \
                        'eps' : [1e-5,.1,.1,.1,.1,0.], \
                        'lmaxs' : [4096,2048,1024,512,256,20], \
                        'nsides' : [2048,1024,512,256,128,64], \
                        'itns' : [100,7,5,3,3,0], \
                        'ro' : 1, \
                        'filter' : 'W' \
                    }
                    cinv(2,pw.rlz,telescope,4096,ntype,fmap,pw.fcmb.alms['o'],pw.lcl,freqs=freqs,**cinv_params,**kwargs_ov)


                if telescope == 'co':
        
                    mtypes = ['E','B']
                    cinv_params = {\
                        'chn' : 6, \
                        'eps' : [1e-5,.1,.1,.1,.1,0.], \
                        'lmaxs' : [2048,1000,400,200,100,20], \
                        'nsides0' : [1024,512,256,128,128,64], \
                        'nsides1' : [512,256,256,128,64,64], \
                        'itns' : [200,9,3,3,7,0], \
                        'ro' : 1, \
                        'reducmn' : 2, \
                        'filter' : 'W' \
                    }
                    cinv_params = {\
                        'chn' : 1, \
                        'eps' : [1e-5], \
                        'lmaxs' : [2048], \
                        'nsides0' : [1024], \
                        'nsides1' : [512], \
                        'itns' : [1000], \
                        'ro' : 1, \
                        'reducmn' : 0, \
                        'filter' : 'W' \
                    }

                    fmapla = prjlib.filename_freqs(freqs,t='la',ntype=ntype)
                    fmapsa = prjlib.filename_freqs(freqs,t='sa',ntype=ntype)
 
                    cinv(2,pw.rlz,telescope,2048,ntype,fmapla,pw.fcmb.alms['o'],pw.lcl,freqs=freqs,fmapsa=fmapsa,**cinv_params,**kwargs_ov)
            
                # aps
                aps(pw.rlz,pw.lmax,pw.fcmb,wn[0],stype=['o'],mtype=mtypes,**kwargs_ov)
                apsx(pw.rlz,pw.lmax,pw.fcmb,pI.fcmb,wn[0],mtype=mtypes,**kwargs_ov)
示例#5
0
def interface(run=[], kwargs_ov={}, kwargs_cmb={}, kwargs_qrec={}, ep=1e-30):

    if kwargs_cmb['t'] != 'la':
        sys.exit('only la is supported')

    # Define parameters, filenames for input CMB
    p = prjlib.analysis_init(**kwargs_cmb)

    # Load pre-computed w-factor which is used for correction normalization of spectrum
    wn = prjlib.wfac(p.telescope)

    # Compute filtering
    if p.fltr == 'none':  # for none-filtered alm
        # Load "observed" aps containing signal, noise, and some residual.
        # This aps will be used for normalization calculation
        ocl = prjlib.loadocl(p.fcmb.scl['o'], lTmin=p.lTmin, lTmax=p.lTmax)
        # CMB alm will be multiplied by 1/ifl before reconstruction process
        ifl = ocl  #p.lcl[0:3,:]

    elif p.fltr == 'cinv':  # for C^-1 wiener-filtered alm
        pc = prjlib.analysis_init(t=p.telescope,
                                  freq='com',
                                  fltr='none',
                                  ntype=p.ntype)

        # Compute aps appropriate for C^-1 filtering case.
        ocl, ifl = quad_filter(p.fcmb.scl,
                               pc.fcmb.scl,
                               p.lmax,
                               p.lcl,
                               lTmin=p.lTmin,
                               lTmax=p.lTmax)
        ocl[ocl <= 0.] = 1e30
        ifl[ifl <= 0.] = 1e30
        wn[:] = wn[0]

    else:
        sys.exit('unknown filtering')

    if 'iso' in p.ntype:  #fullsky case
        wn[:] = 1.

    d = prjlib.data_directory()
    ids = prjlib.rlz_index(doreal=p.doreal)
    qobj = quad_func.reconstruction(d['root'],
                                    ids,
                                    rlz=p.rlz,
                                    stag=p.stag,
                                    run=run,
                                    wn=wn,
                                    lcl=p.lcl,
                                    ocl=ocl,
                                    ifl=ifl,
                                    falm=p.fcmb.alms['o'],
                                    **kwargs_ov,
                                    **kwargs_qrec)

    # Aps of reconstructed phi
    if 'aps' in run:
        aps(p.fltr, qobj, p.rlz, p.fpalm, wn)

    # Cinv kappa
    if 'kcinv' in run:
        compute_kcninv(qobj.f,
                       p.rlz,
                       p.fltr,
                       p.kk[:qobj.olmax + 1],
                       p.fpalm,
                       Snmin=p.snmin,
                       Snmax=p.snmax,
                       qlist=qobj.qlist,
                       **kwargs_ov)