def test_optimize_multidim_quad_obj(self): Q = np.array([[2, 0], [0, 0]]) A = np.array([[-4, 0]]) quad = QuadExpr(Q, A, np.zeros((1, 1))) model = grb.Model() prob = Prob(model) grb_var1 = model.addVar(lb=-1 * GRB.INFINITY, ub=GRB.INFINITY, name='x1') grb_var2 = model.addVar(lb=-1 * GRB.INFINITY, ub=GRB.INFINITY, name='x2') grb_vars = np.array([[grb_var1], [grb_var2]]) var = Variable(grb_vars) bexpr_quad = BoundExpr(quad, var) prob.add_obj_expr(bexpr_quad) self.assertTrue(bexpr_quad in prob._quad_obj_exprs) self.assertTrue(var in prob._vars) prob.update_obj(penalty_coeff=0) prob.optimize() var_value = var.get_value() value = np.zeros((2, 1)) value[0, 0] = 2 self.assertTrue(np.allclose(var_value, value))
def test_get_value_and_get_approx_value_nonlin_constr(self): """ min x^2 -2x + 1 st. x^2 == 4 when convexified at x = 1, min x^2 -2x + 1 + penalty_coeff*|2x-5| when penalty_coeff == 0.5, solution is x = 1.5 and the value is 1.25 (according to Wolfram Alpha) approx value should be 1.25 value should be 1.125 """ quad = QuadExpr(2 * np.eye(1), -2 * np.ones((1, 1)), np.ones((1, 1))) quad_cnt = QuadExpr(2 * np.eye(1), np.zeros((1, 1)), np.zeros((1, 1))) eq = EqExpr(quad_cnt, np.array([[4]])) model = grb.Model() prob = Prob(model) grb_var = model.addVar(lb=-1 * GRB.INFINITY, ub=GRB.INFINITY, name='x') grb_vars = np.array([[grb_var]]) var = Variable(grb_vars, np.array([[1.0]])) model.update() obj = BoundExpr(quad, var) prob.add_obj_expr(obj) bexpr = BoundExpr(eq, var) prob.add_cnt_expr(bexpr) prob.convexify() prob.update_obj(penalty_coeff=0.5) prob.optimize() self.assertTrue(np.allclose(var.get_value(), np.array([[1.5]]))) self.assertTrue( np.allclose(prob.get_approx_value(0.5), np.array([[1.25]]))) self.assertTrue(np.allclose(prob.get_value(0.5), np.array([[1.125]])))
def test_get_value_and_get_approx_value_nonlin_constr(self): """ min x^2 -2x + 1 st. x^2 == 4 when convexified at x = 1, min x^2 -2x + 1 + penalty_coeff*|2x-5| when penalty_coeff == 0.5, solution is x = 1.5 and the value is 1.25 (according to Wolfram Alpha) approx value should be 1.25 value should be 1.125 """ quad = QuadExpr(2*np.eye(1), -2*np.ones((1,1)), np.ones((1,1))) quad_cnt = QuadExpr(2*np.eye(1), np.zeros((1,1)), np.zeros((1,1))) eq = EqExpr(quad_cnt, np.array([[4]])) model = grb.Model() prob = Prob(model) grb_var = model.addVar(lb=-1 * GRB.INFINITY, ub=GRB.INFINITY, name='x') grb_vars = np.array([[grb_var]]) var = Variable(grb_vars, np.array([[1.0]])) model.update() obj = BoundExpr(quad, var) prob.add_obj_expr(obj) bexpr = BoundExpr(eq, var) prob.add_cnt_expr(bexpr) prob.convexify() prob.update_obj(penalty_coeff=0.5) prob.optimize() self.assertTrue(np.allclose(var.get_value(), np.array([[1.5]]))) self.assertTrue(np.allclose(prob.get_approx_value(0.5), np.array([[1.25]]))) self.assertTrue(np.allclose(prob.get_value(0.5), np.array([[1.125]])))
def test_callback(self): x = {} def test(): x[1] = 2 callback = test model = grb.Model() prob = Prob(model, callback) prob.find_closest_feasible_point() self.assertTrue(1 in x) x[1] = 3 prob.optimize() self.assertTrue(1 in x)
def test_add_cnt_expr_eq_aff(self): aff = AffExpr(np.ones((1, 1)), np.zeros((1, 1))) comp = EqExpr(aff, np.array([[2]])) model = grb.Model() prob = Prob(model) grb_var = model.addVar(lb=-1 * GRB.INFINITY, ub=GRB.INFINITY, name='x') grb_vars = np.array([[grb_var]]) var = Variable(grb_vars) model.update() bexpr = BoundExpr(comp, var) prob.add_cnt_expr(bexpr) prob.optimize() self.assertTrue(np.allclose(var.get_value(), np.array([[2]])))
def test_add_cnt_expr_eq_aff(self): aff = AffExpr(np.ones((1,1)), np.zeros((1,1))) comp = EqExpr(aff, np.array([[2]])) model = grb.Model() prob = Prob(model) grb_var = model.addVar(lb=-1 * GRB.INFINITY, ub=GRB.INFINITY, name='x') grb_vars = np.array([[grb_var]]) var = Variable(grb_vars) model.update() bexpr = BoundExpr(comp, var) prob.add_cnt_expr(bexpr) prob.optimize() self.assertTrue(np.allclose(var.get_value(), np.array([[2]])))
def test_optimize_just_quad_obj(self): quad = QuadExpr(2 * np.eye(1), -2 * np.ones((1, 1)), np.zeros((1, 1))) aff = AffExpr(-2 * np.ones((1, 1)), np.zeros((1, 1))) model = grb.Model() prob = Prob(model) grb_var = model.addVar(lb=-1 * GRB.INFINITY, ub=GRB.INFINITY, name='x') grb_vars = np.array([[grb_var]]) var = Variable(grb_vars) bexpr_quad = BoundExpr(quad, var) bexpr_aff = BoundExpr(aff, var) prob.add_obj_expr(bexpr_quad) prob.add_obj_expr(bexpr_aff) self.assertTrue(bexpr_aff in prob._quad_obj_exprs) self.assertTrue(bexpr_quad in prob._quad_obj_exprs) self.assertTrue(var in prob._vars) prob.update_obj(penalty_coeff=0) prob.optimize() self.assertTrue(np.allclose(var.get_value(), np.array([[2.0]])))
def test_optimize_just_quad_obj(self): quad = QuadExpr(2*np.eye(1), -2*np.ones((1,1)), np.zeros((1,1))) aff = AffExpr(-2*np.ones((1,1)), np.zeros((1,1))) model = grb.Model() prob = Prob(model) grb_var = model.addVar(lb=-1 * GRB.INFINITY, ub=GRB.INFINITY, name='x') grb_vars = np.array([[grb_var]]) var = Variable(grb_vars) bexpr_quad = BoundExpr(quad, var) bexpr_aff = BoundExpr(aff, var) prob.add_obj_expr(bexpr_quad) prob.add_obj_expr(bexpr_aff) self.assertTrue(bexpr_aff in prob._quad_obj_exprs) self.assertTrue(bexpr_quad in prob._quad_obj_exprs) self.assertTrue(var in prob._vars) prob.update_obj(penalty_coeff=0) prob.optimize() self.assertTrue(np.allclose(var.get_value(), np.array([[2.0]])))
def test_optimize_multidim_quad_obj(self): Q = np.array([[2,0], [0,0]]) A = np.array([[-4, 0]]) quad = QuadExpr(Q, A, np.zeros((1,1))) model = grb.Model() prob = Prob(model) grb_var1 = model.addVar(lb=-1 * GRB.INFINITY, ub=GRB.INFINITY, name='x1') grb_var2 = model.addVar(lb=-1 * GRB.INFINITY, ub=GRB.INFINITY, name='x2') grb_vars = np.array([[grb_var1], [grb_var2]]) var = Variable(grb_vars) bexpr_quad = BoundExpr(quad, var) prob.add_obj_expr(bexpr_quad) self.assertTrue(bexpr_quad in prob._quad_obj_exprs) self.assertTrue(var in prob._vars) prob.update_obj(penalty_coeff=0) prob.optimize() var_value = var.get_value() value = np.zeros((2,1)) value[0,0] = 2 self.assertTrue(np.allclose(var_value, value))
def test_get_approx_value_lin_constr(self): """ min x^2 st. x == 4 when convexified, min x^2 + penalty_coeff*|x-4| when penalty_coeff == 1, solution is x = 0.5 and the value is 3.75 (according to Wolfram Alpha) when penalty_coeff == 2, solution is x = 1.0 and the value is 7.0 (according to Wolfram Alpha) """ quad = QuadExpr(2 * np.eye(1), np.zeros((1, 1)), np.zeros((1, 1))) e = Expr(f) eq = EqExpr(e, np.array([[4]])) model = grb.Model() prob = Prob(model) grb_var = model.addVar(lb=-1 * GRB.INFINITY, ub=GRB.INFINITY, name='x') grb_vars = np.array([[grb_var]]) var = Variable(grb_vars) model.update() obj = BoundExpr(quad, var) prob.add_obj_expr(obj) bexpr = BoundExpr(eq, var) prob.add_cnt_expr(bexpr) prob.optimize() # needed to set an initial value prob.convexify() prob.update_obj(penalty_coeff=1.0) prob.optimize() self.assertTrue(np.allclose(var.get_value(), np.array([[0.5]]))) self.assertTrue( np.allclose(prob.get_approx_value(1.0), np.array([[3.75]]))) prob.update_obj(penalty_coeff=2.0) prob.optimize() self.assertTrue(np.allclose(var.get_value(), np.array([[1.0]]))) self.assertTrue( np.allclose(prob.get_approx_value(2.0), np.array([[7]])))
def test_get_approx_value_lin_constr(self): """ min x^2 st. x == 4 when convexified, min x^2 + penalty_coeff*|x-4| when penalty_coeff == 1, solution is x = 0.5 and the value is 3.75 (according to Wolfram Alpha) when penalty_coeff == 2, solution is x = 1.0 and the value is 7.0 (according to Wolfram Alpha) """ quad = QuadExpr(2*np.eye(1), np.zeros((1,1)), np.zeros((1,1))) e = Expr(f) eq = EqExpr(e, np.array([[4]])) model = grb.Model() prob = Prob(model) grb_var = model.addVar(lb=-1 * GRB.INFINITY, ub=GRB.INFINITY, name='x') grb_vars = np.array([[grb_var]]) var = Variable(grb_vars) model.update() obj = BoundExpr(quad, var) prob.add_obj_expr(obj) bexpr = BoundExpr(eq, var) prob.add_cnt_expr(bexpr) prob.optimize() # needed to set an initial value prob.convexify() prob.update_obj(penalty_coeff=1.0) prob.optimize() self.assertTrue(np.allclose(var.get_value(), np.array([[0.5]]))) self.assertTrue(np.allclose(prob.get_approx_value(1.0), np.array([[3.75]]))) prob.update_obj(penalty_coeff=2.0) prob.optimize() self.assertTrue(np.allclose(var.get_value(), np.array([[1.0]]))) self.assertTrue(np.allclose(prob.get_approx_value(2.0), np.array([[7]])))