示例#1
0
def test_verbosity_false(capsys):
    '''verbosity false for ks'''
    d1 = np.random.normal(size=1000)
    d2 = d1
    ks(d1, d2, verbose=False)
    captured = capsys.readouterr()
    assert captured.out == ""
def test_verbosity_true_(capsys):
    d1 = np.random.normal(size=1000)
    d2 = d1
    ks(d1, d2, verbose=True)
    captured = capsys.readouterr()
    assert captured.out == "\nKS: pvalue = 1.0\n\nKS: Null hypothesis cannot be rejected. Distributions not statistically different.\n"
    es(d1, d2, verbose=True)
    captured = capsys.readouterr()
    assert captured.out == "\nES: pvalue = 1.0\n\nES: Null hypothesis cannot be rejected. Distributions not statistically different.\n"
示例#3
0
def test_ks_returns_small():
    """
    Test.
    """
    d1 = np.random.normal(size=1000)
    d2 = np.random.weibull(1, size=1000) - 1
    assert ks(d1, d2)[1] < 0.001
示例#4
0
def test_ks_accepts_pd_series():
    """
    Test.
    """
    d1 = pd.Series(np.random.normal(size=1000))
    d2 = d1
    assert ks(d1, d2)[1] == 1.0
示例#5
0
def test_ks_returns_one():
    """
    Test.
    """
    d1 = np.random.normal(size=1000)
    d2 = d1
    assert ks(d1, d2)[1] == 1.0
def test_distribution_statistics_attributes_ks():
    d1 = np.histogram(np.random.normal(size=1000), 10)[0]
    d2 = np.histogram(np.random.normal(size=1000), 10)[0]
    myTest = DistributionStatistics('ks', binning_strategy=None)
    _ = myTest.compute(d1, d2, verbose=False)
    ks_value, p_value = ks(d1, d2)
    assert myTest.statistic == ks_value
示例#7
0
def test_ks_returns_small():
    '''Kolmogorov-Smirnov test statistic returns small value (<0.001)'''
    d1 = np.random.normal(size=1000)
    d2 = np.random.weibull(1, size=1000) - 1
    assert ks(d1, d2)[1] < 0.001
示例#8
0
def test_ks_accepts_pd_series():
    '''Kolmogorov-Smirnov test statistic accepts pd Series'''
    d1 = pd.Series(np.random.normal(size=1000))
    d2 = d1
    assert ks(d1, d2)[1] == 1.0
示例#9
0
def test_ks_returns_one():
    '''Kolmogorov-Smirnov test statistic returns one'''
    d1 = np.random.normal(size=1000)
    d2 = d1
    assert ks(d1, d2)[1] == 1.0