示例#1
0
def test_zeros():
    """Tests zeros"""

    # Scalar
    zeros = ops.zeros([1])
    assert isinstance(zeros, tf.Tensor)
    assert zeros.ndim == 1
    assert zeros.shape[0] == 1
    assert zeros.numpy() == 0.0

    # 1D
    zeros = ops.zeros([5])
    assert isinstance(zeros, tf.Tensor)
    assert zeros.ndim == 1
    assert zeros.shape[0] == 5
    assert all(zeros.numpy() == 0.0)

    # 2D
    zeros = ops.zeros([5, 4])
    assert isinstance(zeros, tf.Tensor)
    assert zeros.ndim == 2
    assert zeros.shape[0] == 5
    assert zeros.shape[1] == 4
    assert np.all(zeros.numpy() == 0.0)

    # 3D
    zeros = ops.zeros([5, 4, 3])
    assert isinstance(zeros, tf.Tensor)
    assert zeros.ndim == 3
    assert zeros.shape[0] == 5
    assert zeros.shape[1] == 4
    assert zeros.shape[2] == 3
    assert np.all(zeros.numpy() == 0.0)
    def __init__(
        self,
        d: int = 1,
        prior=None,
        expand_dims: int = -1,
        name="MultivariateNormalParameter",
    ):

        # Prior
        if prior is None:
            prior = MultivariateNormal(O.zeros([d]), O.eye(d))

        # Transform
        if expand_dims is not None:
            transform = lambda x: O.expand_dims(x, expand_dims)
        else:
            transform = None

        # Initializer and variable transforms
        initializer = {
            "loc": lambda x: xavier([d]),
            "cov": lambda x: xavier([int(d * (d + 1) / 2)]),
        }
        var_transform = {"loc": None, "cov": O.log_cholesky_transform}

        super().__init__(
            posterior=MultivariateNormal,
            prior=prior,
            transform=transform,
            initializer=initializer,
            var_transform=var_transform,
            name=name,
        )
示例#3
0
 def kl_loss(self):
     """Compute the sum of the Kullback–Leibler divergences between this
     parameter's priors and its variational posteriors."""
     if self.prior is None:
         return O.zeros([])
     else:
         return O.sum(O.kl_divergence(self.posterior, self.prior),
                      axis=None)
示例#4
0
    def __init__(
        self,
        d: int = 1,
        prior=None,
        expand_dims: int = -1,
        name="MultivariateNormalParameter",
    ):

        # Transformation for scale parameters
        def log_cholesky_transform(x):
            if get_backend() == "pytorch":
                raise NotImplementedError
            else:
                import tensorflow as tf
                import tensorflow_probability as tfp

                E = tfp.math.fill_triangular(x)
                E = tf.linalg.set_diag(E,
                                       tf.exp(tf.linalg.tensor_diag_part(E)))
                return E @ tf.transpose(E)

        # Prior
        if prior is None:
            prior = MultivariateNormal(O.zeros([d]), O.eye(d))

        # Transform
        if expand_dims is not None:
            transform = lambda x: O.expand_dims(x, expand_dims)
        else:
            transform = None

        # Initializer and variable transforms
        initializer = {
            "loc": lambda x: xavier([d]),
            "cov": lambda x: xavier([int(d * (d + 1) / 2)]),
        }
        var_transform = {"loc": None, "cov": log_cholesky_transform}

        super().__init__(
            posterior=MultivariateNormal,
            prior=prior,
            transform=transform,
            initializer=initializer,
            var_transform=var_transform,
            name=name,
        )