def main(): import problem_unittests as tests tests.test_get_init_cell(get_init_cell) tests.test_get_embed(get_embed) tests.test_build_rnn(build_rnn) tests.test_build_nn(build_nn) tests.test_get_batches(get_batches) tests.test_get_tensors(get_tensors) tests.test_pick_word(pick_word) print(get_batches([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], batch_size=3, seq_length=2))
def run_test(): import problem_unittests as t t.test_create_lookup_tables(create_lookup_tables) t.test_get_batches(get_batches) t.test_tokenize(token_lookup) t.test_get_inputs(get_inputs) t.test_get_init_cell(get_init_cell) t.test_get_embed(get_embed) t.test_build_rnn(build_rnn) t.test_build_nn(build_nn) t.test_get_tensors(get_tensors) t.test_pick_word(pick_word)
Get input, initial state, final state, and probabilities tensor from <loaded_graph> :param loaded_graph: TensorFlow graph loaded from file :return: Tuple (InputTensor, InitialStateTensor, FinalStateTensor, ProbsTensor) """ # TODO: Implement Function inputs = loaded_graph.get_tensor_by_name('input:0') init_state = loaded_graph.get_tensor_by_name('initial_state:0') final_state = loaded_graph.get_tensor_by_name('final_state:0') probs = loaded_graph.get_tensor_by_name('probs:0') return inputs, init_state, final_state, probs """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_get_tensors(get_tensors) # ### Choose Word # Implement the `pick_word()` function to select the next word using `probabilities`. # In[62]: def pick_word(probabilities, int_to_vocab): """ Pick the next word in the generated text :param probabilities: Probabilites of the next word :param int_to_vocab: Dictionary of word ids as the keys and words as the values :return: String of the predicted word """ # TODO: Implement Function