def run_tests(): import problem_unittests as t t.test_folder_path(cifar10_dataset_folder_path) t.test_normalize(normalize) t.test_one_hot_encode(one_hot_encode) t.test_nn_image_inputs(neural_net_image_input) t.test_nn_label_inputs(neural_net_label_input) t.test_nn_keep_prob_inputs(neural_net_keep_prob_input) t.test_con_pool(conv2conv2d_maxpool) t.test_flatten(flatten) t.test_fully_conn(fully_conn) t.test_output(output) t.test_conv_net(conv_net) t.test_train_nn(train_neural_network)
def normalize(x): """ Normalize a list of sample image data in the range of 0 to 1 : x: List of image data. The image shape is (28, 28, 1) : return: Numpy array of normalize data """ # TODO: Implement Function output = np.array([image/255 for image in x]) return output """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_normalize(normalize) # ### One-hot encode # Just like the previous code cell, you'll be implementing a function for preprocessing. This time, you'll implement the `one_hot_encode` function. The input, `x`, are a list of labels. Implement the function to return the list of labels as One-Hot encoded Numpy array. The possible values for labels are 0 to 9. The one-hot encoding function should return the same encoding for each value between each call to `one_hot_encode`. Make sure to save the map of encodings outside the function. # # Hint: Don't reinvent the wheel. You have multiple ways to attempt this: Numpy, TF, or even sklearn's preprocessing package. # In[ ]: def one_hot_encode(x): """ One hot encode a list of sample labels. Return a one-hot encoded vector for each label. : x: List of sample Labels : return: Numpy array of one-hot encoded labels
def runNormalisationTests(self): tests.test_normalize(normalize) print("Model NormalisationTests Ran Successfully")
""" Normalize a list of sample image data in the range of 0 to 1 : x: List of image data. The image shape is (32, 32, 3) : return: Numpy array of normalize data """ # TODO: Implement Function scale_max = 255 scale_min = 0 return (x-scale_min)/(scale_max-scale_min) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_normalize(normalize) # ### One-hot encode # Just like the previous code cell, you'll be implementing a function for preprocessing. This time, you'll implement the `one_hot_encode` function. The input, `x`, are a list of labels. Implement the function to return the list of labels as One-Hot encoded Numpy array. The possible values for labels are 0 to 9. The one-hot encoding function should return the same encoding for each value between each call to `one_hot_encode`. Make sure to save the map of encodings outside the function. # # Hint: Don't reinvent the wheel. # In[4]: from sklearn import preprocessing lb = preprocessing.LabelBinarizer() lb.fit([0,1,2,3,4,5,6,7,8,9]) def one_hot_encode(x):
def test(): tests.test_normalize(normalize) tests.test_one_hot_encode(one_hot_encode)