def main(xargs, api): torch.set_num_threads(4) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) search_space = get_search_spaces(xargs.search_space, 'nas-bench-301') if xargs.search_space == 'tss': random_arch = random_topology_func(search_space) mutate_arch = mutate_topology_func(search_space) else: random_arch = random_size_func(search_space) mutate_arch = mutate_size_func(search_space) x_start_time = time.time() logger.log('{:} use api : {:}'.format(time_string(), api)) logger.log('-' * 30 + ' start searching with the time budget of {:} s'.format( xargs.time_budget)) history, current_best_index, total_times = regularized_evolution( xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, api, xargs.dataset) logger.log( '{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).' .format(time_string(), len(history), total_times[-1], time.time() - x_start_time)) best_arch = max(history, key=lambda x: x[0])[1] logger.log('{:} best arch is {:}'.format(time_string(), best_arch)) info = api.query_info_str_by_arch( best_arch, '200' if xargs.search_space == 'tss' else '90') logger.log('{:}'.format(info)) logger.log('-' * 100) logger.close() return logger.log_dir, current_best_index, total_times
def main(xargs, api): torch.set_num_threads(4) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) logger.log('{:} use api : {:}'.format(time_string(), api)) api.reset_time() search_space = get_search_spaces(xargs.search_space, 'nas-bench-301') if xargs.search_space == 'tss': random_arch = random_topology_func(search_space) else: random_arch = random_size_func(search_space) best_arch, best_acc, total_time_cost, history = None, -1, [], [] current_best_index = [] while len(total_time_cost) == 0 or total_time_cost[-1] < xargs.time_budget: arch = random_arch() accuracy, _, _, total_cost = api.simulate_train_eval(arch, xargs.dataset, hp='12') total_time_cost.append(total_cost) history.append(arch) if best_arch is None or best_acc < accuracy: best_acc, best_arch = accuracy, arch logger.log('[{:03d}] : {:} : accuracy = {:.2f}%'.format(len(history), arch, accuracy)) current_best_index.append(api.query_index_by_arch(best_arch)) logger.log('{:} best arch is {:}, accuracy = {:.2f}%, visit {:} archs with {:.1f} s.'.format(time_string(), best_arch, best_acc, len(history), total_time_cost[-1])) info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90') logger.log('{:}'.format(info)) logger.log('-'*100) logger.close() return logger.log_dir, current_best_index, total_time_cost
def main(xargs, api): torch.set_num_threads(4) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) logger.log('{:} use api : {:}'.format(time_string(), api)) api.reset_time() search_space = get_search_spaces(xargs.search_space, 'nats-bench') if xargs.search_space == 'tss': cs = get_topology_config_space(search_space) config2structure = config2topology_func() else: cs = get_size_config_space(search_space) config2structure = config2size_func(search_space) hb_run_id = '0' NS = hpns.NameServer(run_id=hb_run_id, host='localhost', port=0) ns_host, ns_port = NS.start() num_workers = 1 workers = [] for i in range(num_workers): w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, dataset=xargs.dataset, api=api, run_id=hb_run_id, id=i) w.run(background=True) workers.append(w) start_time = time.time() bohb = BOHB(configspace=cs, run_id=hb_run_id, eta=3, min_budget=1, max_budget=12, nameserver=ns_host, nameserver_port=ns_port, num_samples=xargs.num_samples, random_fraction=xargs.random_fraction, bandwidth_factor=xargs.bandwidth_factor, ping_interval=10, min_bandwidth=xargs.min_bandwidth) results = bohb.run(xargs.n_iters, min_n_workers=num_workers) bohb.shutdown(shutdown_workers=True) NS.shutdown() # print('There are {:} runs.'.format(len(results.get_all_runs()))) # workers[0].total_times # workers[0].trajectory current_best_index = [] for idx in range(len(workers[0].trajectory)): trajectory = workers[0].trajectory[:idx+1] arch = max(trajectory, key=lambda x: x[0])[1] current_best_index.append(api.query_index_by_arch(arch)) best_arch = max(workers[0].trajectory, key=lambda x: x[0])[1] logger.log('Best found configuration: {:} within {:.3f} s'.format(best_arch, workers[0].total_times[-1])) info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90') logger.log('{:}'.format(info)) logger.log('-'*100) logger.close() return logger.log_dir, current_best_index, workers[0].total_times
def main(xargs, nas_bench): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads( xargs.workers ) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) if xargs.dataset == 'cifar10': dataname = 'cifar10-valid' else: dataname = xargs.dataset if xargs.data_path is not None: train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) split_Fpath = 'configs/nas-benchmark/cifar-split.txt' cifar_split = load_config(split_Fpath, None, None) train_split, valid_split = cifar_split.train, cifar_split.valid logger.log('Load split file from {:}'.format(split_Fpath)) config_path = 'configs/nas-benchmark/algos/R-EA.config' config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) # To split data train_data_v2 = deepcopy(train_data) train_data_v2.transform = valid_data.transform valid_data = train_data_v2 search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split) # data loader train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True) valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader} else: config_path = 'configs/nas-benchmark/algos/R-EA.config' config = load_config(config_path, None, logger) logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) extra_info = {'config': config, 'train_loader': None, 'valid_loader': None} search_space = get_search_spaces('cell', xargs.search_space_name) random_arch = random_architecture_func(xargs.max_nodes, search_space) mutate_arch = mutate_arch_func(search_space) #x =random_arch() ; y = mutate_arch(x) x_start_time = time.time() logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench)) logger.log('-'*30 + ' start searching with the time budget of {:} s'.format(xargs.time_budget)) history, total_cost = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, nas_bench if args.ea_fast_by_api else None, extra_info, dataname) logger.log('{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).'.format(time_string(), len(history), total_cost, time.time()-x_start_time)) best_arch = max(history, key=lambda i: i.accuracy) best_arch = best_arch.arch logger.log('{:} best arch is {:}'.format(time_string(), best_arch)) info = nas_bench.query_by_arch( best_arch ) if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch)) else : logger.log('{:}'.format(info)) logger.log('-'*100) logger.close() return logger.log_dir, nas_bench.query_index_by_arch( best_arch )
def main(xargs, api): torch.set_num_threads(4) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) search_space = get_search_spaces(xargs.search_space, 'nas-bench-301') if xargs.search_space == 'tss': policy = PolicyTopology(search_space) else: policy = PolicySize(search_space) optimizer = torch.optim.Adam(policy.parameters(), lr=xargs.learning_rate) #optimizer = torch.optim.SGD(policy.parameters(), lr=xargs.learning_rate) eps = np.finfo(np.float32).eps.item() baseline = ExponentialMovingAverage(xargs.EMA_momentum) logger.log('policy : {:}'.format(policy)) logger.log('optimizer : {:}'.format(optimizer)) logger.log('eps : {:}'.format(eps)) # nas dataset load logger.log('{:} use api : {:}'.format(time_string(), api)) api.reset_time() # REINFORCE x_start_time = time.time() logger.log('Will start searching with time budget of {:} s.'.format(xargs.time_budget)) total_steps, total_costs, trace = 0, [], [] current_best_index = [] while len(total_costs) == 0 or total_costs[-1] < xargs.time_budget: start_time = time.time() log_prob, action = select_action( policy ) arch = policy.generate_arch( action ) reward, _, _, current_total_cost = api.simulate_train_eval(arch, xargs.dataset, hp='12') trace.append((reward, arch)) total_costs.append(current_total_cost) baseline.update(reward) # calculate loss policy_loss = ( -log_prob * (reward - baseline.value()) ).sum() optimizer.zero_grad() policy_loss.backward() optimizer.step() # accumulate time total_steps += 1 logger.log('step [{:3d}] : average-reward={:.3f} : policy_loss={:.4f} : {:}'.format(total_steps, baseline.value(), policy_loss.item(), policy.genotype())) # to analyze current_best_index.append(api.query_index_by_arch(max(trace, key=lambda x: x[0])[1])) # best_arch = policy.genotype() # first version best_arch = max(trace, key=lambda x: x[0])[1] logger.log('REINFORCE finish with {:} steps and {:.1f} s (real cost={:.3f}).'.format(total_steps, total_costs[-1], time.time()-x_start_time)) info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90') logger.log('{:}'.format(info)) logger.log('-'*100) logger.close() return logger.log_dir, current_best_index, total_costs
def main(xargs, nas_bench): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads( xargs.workers ) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10' train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) split_Fpath = 'configs/nas-benchmark/cifar-split.txt' cifar_split = load_config(split_Fpath, None, None) train_split, valid_split = cifar_split.train, cifar_split.valid logger.log('Load split file from {:}'.format(split_Fpath)) config_path = 'configs/nas-benchmark/algos/R-EA.config' config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) # To split data train_data_v2 = deepcopy(train_data) train_data_v2.transform = valid_data.transform valid_data = train_data_v2 search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split) # data loader train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True) valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader} search_space = get_search_spaces('cell', xargs.search_space_name) random_arch = random_architecture_func(xargs.max_nodes, search_space) #x =random_arch() ; y = mutate_arch(x) logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench)) best_arch, best_acc, total_time_cost, history = None, -1, 0, [] #for idx in range(xargs.random_num): while total_time_cost < xargs.time_budget: arch = random_arch() accuracy, cost_time = train_and_eval(arch, nas_bench, extra_info) if total_time_cost + cost_time > xargs.time_budget: break else: total_time_cost += cost_time history.append(arch) if best_arch is None or best_acc < accuracy: best_acc, best_arch = accuracy, arch logger.log('[{:03d}] : {:} : accuracy = {:.2f}%'.format(len(history), arch, accuracy)) logger.log('{:} best arch is {:}, accuracy = {:.2f}%, visit {:} archs with {:.1f} s.'.format(time_string(), best_arch, best_acc, len(history), total_time_cost)) info = nas_bench.query_by_arch( best_arch ) if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch)) else : logger.log('{:}'.format(info)) logger.log('-'*100) logger.close() return logger.log_dir, nas_bench.query_index_by_arch( best_arch )
def main(xargs): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads( xargs.workers ) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) config = load_config(xargs.config_path, {'class_num': class_num, 'xshape': xshape}, logger) search_loader, _, valid_loader = get_nas_search_loaders(train_data, valid_data, xargs.dataset, 'configs/nas-benchmark/', \ (config.batch_size, config.test_batch_size), xargs.workers) logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) search_space = get_search_spaces('cell', xargs.search_space_name) model_config = dict2config({'name': 'SPOS', 'C': xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, 'num_classes': class_num, 'space' : search_space, 'affine' : False, 'track_running_stats': bool(xargs.track_running_stats)}, None) logger.log('search space : {:}'.format(search_space)) model = get_cell_based_tiny_net(model_config) flop, param = get_model_infos(model, xshape) logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) logger.log('search-space : {:}'.format(search_space)) if xargs.arch_nas_dataset is None: api = None else: api = API(xargs.arch_nas_dataset) logger.log('{:} create API = {:} done'.format(time_string(), api)) checkpoint_path_template = '{}/checkpoint/seed-{}_epoch-{}.pth' logger.log("=> loading checkpoint from {}".format(checkpoint_path_template.format(args.save_dir, args.rand_seed, 0))) load(checkpoint_path_template.format(args.save_dir, args.rand_seed, 0), model) init_model = deepcopy(model) angles = [] for epoch in range(xargs.epochs): genotype = load(checkpoint_path_template.format(args.save_dir, args.rand_seed, epoch), model) logger.log("=> loading checkpoint from {}".format(checkpoint_path_template.format(args.dataset, args.rand_seed, epoch))) cur_model = deepcopy(model) angle = get_arch_angle(init_model, cur_model, genotype, search_space) logger.log('[{:}] cal angle : angle={}'.format(epoch, angle)) angle = round(angle,2) angles.append(angle) print(angles)
def main(xargs): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1) config = load_config(xargs.config_path, { "class_num": class_num, "xshape": xshape }, logger) search_loader, _, valid_loader = get_nas_search_loaders( train_data, valid_data, xargs.dataset, "configs/nas-benchmark/", config.batch_size, xargs.workers, ) logger.log( "||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}" .format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) logger.log("||||||| {:10s} ||||||| Config={:}".format( xargs.dataset, config)) search_space = get_search_spaces("cell", xargs.search_space_name) model_config = dict2config( { "name": "DARTS-V2", "C": xargs.channel, "N": xargs.num_cells, "max_nodes": xargs.max_nodes, "num_classes": class_num, "space": search_space, "affine": False, "track_running_stats": bool(xargs.track_running_stats), }, None, ) search_model = get_cell_based_tiny_net(model_config) logger.log("search-model :\n{:}".format(search_model)) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.get_weights(), config) a_optimizer = torch.optim.Adam( search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay, ) logger.log("w-optimizer : {:}".format(w_optimizer)) logger.log("a-optimizer : {:}".format(a_optimizer)) logger.log("w-scheduler : {:}".format(w_scheduler)) logger.log("criterion : {:}".format(criterion)) flop, param = get_model_infos(search_model, xshape) # logger.log('{:}'.format(search_model)) logger.log("FLOP = {:.2f} M, Params = {:.2f} MB".format(flop, param)) if xargs.arch_nas_dataset is None: api = None else: api = API(xargs.arch_nas_dataset) logger.log("{:} create API = {:} done".format(time_string(), api)) last_info, model_base_path, model_best_path = ( logger.path("info"), logger.path("model"), logger.path("best"), ) network, criterion = torch.nn.DataParallel( search_model).cuda(), criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info["epoch"] checkpoint = torch.load(last_info["last_checkpoint"]) genotypes = checkpoint["genotypes"] valid_accuracies = checkpoint["valid_accuracies"] search_model.load_state_dict(checkpoint["search_model"]) w_scheduler.load_state_dict(checkpoint["w_scheduler"]) w_optimizer.load_state_dict(checkpoint["w_optimizer"]) a_optimizer.load_state_dict(checkpoint["a_optimizer"]) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(last_info, start_epoch)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes = ( 0, { "best": -1 }, { -1: search_model.genotype() }, ) # start training start_time, search_time, epoch_time, total_epoch = ( time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup, ) for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = "Time Left: {:}".format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True)) epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch) min_LR = min(w_scheduler.get_lr()) logger.log("\n[Search the {:}-th epoch] {:}, LR={:}".format( epoch_str, need_time, min_LR)) search_w_loss, search_w_top1, search_w_top5 = search_func( search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger, ) search_time.update(time.time() - start_time) logger.log( "[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s" .format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion) logger.log( "[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%" .format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) # check the best accuracy valid_accuracies[epoch] = valid_a_top1 if valid_a_top1 > valid_accuracies["best"]: valid_accuracies["best"] = valid_a_top1 genotypes["best"] = search_model.genotype() find_best = True else: find_best = False genotypes[epoch] = search_model.genotype() logger.log("<<<--->>> The {:}-th epoch : {:}".format( epoch_str, genotypes[epoch])) # save checkpoint save_path = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(xargs), "search_model": search_model.state_dict(), "w_optimizer": w_optimizer.state_dict(), "a_optimizer": a_optimizer.state_dict(), "w_scheduler": w_scheduler.state_dict(), "genotypes": genotypes, "valid_accuracies": valid_accuracies, }, model_base_path, logger, ) last_info = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(args), "last_checkpoint": save_path, }, logger.path("info"), logger, ) if find_best: logger.log( "<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%." .format(epoch_str, valid_a_top1)) copy_checkpoint(model_base_path, model_best_path, logger) with torch.no_grad(): logger.log("arch-parameters :\n{:}".format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu())) if api is not None: logger.log("{:}".format(api.query_by_arch(genotypes[epoch], "200"))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log("\n" + "-" * 100) # check the performance from the architecture dataset logger.log( "DARTS-V2 : run {:} epochs, cost {:.1f} s, last-geno is {:}.".format( total_epoch, search_time.sum, genotypes[total_epoch - 1])) if api is not None: logger.log("{:}".format(api.query_by_arch(genotypes[total_epoch - 1]), "200")) logger.close()
def main(xargs): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1) if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100': split_Fpath = 'configs/nas-benchmark/cifar-split.txt' cifar_split = load_config(split_Fpath, None, None) train_split, valid_split = cifar_split.train, cifar_split.valid logger.log('Load split file from {:}'.format(split_Fpath)) elif xargs.dataset.startswith('ImageNet16'): split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format( xargs.dataset) imagenet16_split = load_config(split_Fpath, None, None) train_split, valid_split = imagenet16_split.train, imagenet16_split.valid logger.log('Load split file from {:}'.format(split_Fpath)) else: raise ValueError('invalid dataset : {:}'.format(xargs.dataset)) config_path = 'configs/nas-benchmark/algos/DARTS.config' config = load_config(config_path, { 'class_num': class_num, 'xshape': xshape }, logger) # To split data train_data_v2 = deepcopy(train_data) train_data_v2.transform = valid_data.transform valid_data = train_data_v2 search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split) # data loader search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True, num_workers=xargs.workers, pin_memory=True) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) logger.log( '||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}' .format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format( xargs.dataset, config)) search_space = get_search_spaces('cell', xargs.search_space_name) model_config = dict2config( { 'name': 'DARTS-V1', 'C': xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, 'num_classes': class_num, 'space': search_space }, None) search_model = get_cell_based_tiny_net(model_config) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.get_weights(), config) a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) logger.log('w-optimizer : {:}'.format(w_optimizer)) logger.log('a-optimizer : {:}'.format(a_optimizer)) logger.log('w-scheduler : {:}'.format(w_scheduler)) logger.log('criterion : {:}'.format(criterion)) flop, param = get_model_infos(search_model, xshape) #logger.log('{:}'.format(search_model)) logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) last_info, model_base_path, model_best_path = logger.path( 'info'), logger.path('model'), logger.path('best') network, criterion = torch.nn.DataParallel( search_model).cuda(), criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] checkpoint = torch.load(last_info['last_checkpoint']) genotypes = checkpoint['genotypes'] valid_accuracies = checkpoint['valid_accuracies'] search_model.load_state_dict(checkpoint['search_model']) w_scheduler.load_state_dict(checkpoint['w_scheduler']) w_optimizer.load_state_dict(checkpoint['w_optimizer']) a_optimizer.load_state_dict(checkpoint['a_optimizer']) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(last_info, start_epoch)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {} # start training start_time, epoch_time, total_epoch = time.time(), AverageMeter( ), config.epochs + config.warmup for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True)) epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format( epoch_str, need_time, min(w_scheduler.get_lr()))) search_w_loss, search_w_top1, search_w_top5 = search_func( search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) logger.log( '[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%' .format(epoch_str, search_w_loss, search_w_top1, search_w_top5)) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion) logger.log( '[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%' .format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) # check the best accuracy valid_accuracies[epoch] = valid_a_top1 if valid_a_top1 > valid_accuracies['best']: valid_accuracies['best'] = valid_a_top1 genotypes['best'] = search_model.genotype() find_best = True else: find_best = False genotypes[epoch] = search_model.genotype() logger.log('<<<--->>> The {:}-th epoch : {:}'.format( epoch_str, genotypes[epoch])) # save checkpoint save_path = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(xargs), 'search_model': search_model.state_dict(), 'w_optimizer': w_optimizer.state_dict(), 'a_optimizer': a_optimizer.state_dict(), 'w_scheduler': w_scheduler.state_dict(), 'genotypes': genotypes, 'valid_accuracies': valid_accuracies }, model_base_path, logger) last_info = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(args), 'last_checkpoint': save_path, }, logger.path('info'), logger) if find_best: logger.log( '<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.' .format(epoch_str, valid_a_top1)) copy_checkpoint(model_base_path, model_best_path, logger) with torch.no_grad(): logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu())) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log('\n' + '-' * 100) # check the performance from the architecture dataset #if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset): # logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset)) #else: # nas_bench = NASBenchmarkAPI(xargs.arch_nas_dataset) # geno = genotypes[total_epoch-1] # logger.log('The last model is {:}'.format(geno)) # info = nas_bench.query_by_arch( geno ) # if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) # else : logger.log('{:}'.format(info)) # logger.log('-'*100) # geno = genotypes['best'] # logger.log('The best model is {:}'.format(geno)) # info = nas_bench.query_by_arch( geno ) # if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) # else : logger.log('{:}'.format(info)) logger.close()
def main(args): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True #torch.backends.cudnn.deterministic = True torch.set_num_threads(args.workers) prepare_seed(args.rand_seed) logger = prepare_logger(args) # prepare dataset train_data, valid_data, xshape, class_num = get_datasets( args.dataset, args.data_path, args.cutout_length) #train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True , num_workers=args.workers, pin_memory=True) valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) split_file_path = Path(args.split_path) assert split_file_path.exists(), '{:} does not exist'.format( split_file_path) split_info = torch.load(split_file_path) train_split, valid_split = split_info['train'], split_info['valid'] assert len( set(train_split).intersection(set(valid_split)) ) == 0, 'There should be 0 element that belongs to both train and valid' assert len(train_split) + len(valid_split) == len( train_data), '{:} + {:} vs {:}'.format(len(train_split), len(valid_split), len(train_data)) search_dataset = SearchDataset(args.dataset, train_data, train_split, valid_split) search_train_loader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split), pin_memory=True, num_workers=args.workers) search_valid_loader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), pin_memory=True, num_workers=args.workers) search_loader = torch.utils.data.DataLoader(search_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True, sampler=None) # get configures if args.ablation_num_select is None or args.ablation_num_select <= 0: model_config = load_config(args.model_config, { 'class_num': class_num, 'search_mode': 'shape' }, logger) else: model_config = load_config( args.model_config, { 'class_num': class_num, 'search_mode': 'ablation', 'num_random_select': args.ablation_num_select }, logger) # obtain the model search_model = obtain_search_model(model_config) MAX_FLOP, param = get_model_infos(search_model, xshape) optim_config = load_config(args.optim_config, { 'class_num': class_num, 'FLOP': MAX_FLOP }, logger) logger.log('Model Information : {:}'.format(search_model.get_message())) logger.log('MAX_FLOP = {:} M'.format(MAX_FLOP)) logger.log('Params = {:} M'.format(param)) logger.log('train_data : {:}'.format(train_data)) logger.log('search-data: {:}'.format(search_dataset)) logger.log('search_train_loader : {:} samples'.format(len(train_split))) logger.log('search_valid_loader : {:} samples'.format(len(valid_split))) base_optimizer, scheduler, criterion = get_optim_scheduler( search_model.base_parameters(), optim_config) arch_optimizer = torch.optim.Adam(search_model.arch_parameters( optim_config.arch_LR), lr=optim_config.arch_LR, betas=(0.5, 0.999), weight_decay=optim_config.arch_decay) logger.log('base-optimizer : {:}'.format(base_optimizer)) logger.log('arch-optimizer : {:}'.format(arch_optimizer)) logger.log('scheduler : {:}'.format(scheduler)) logger.log('criterion : {:}'.format(criterion)) last_info, model_base_path, model_best_path = logger.path( 'info'), logger.path('model'), logger.path('best') network, criterion = torch.nn.DataParallel( search_model).cuda(), criterion.cuda() # load checkpoint if last_info.exists() or (args.resume is not None and osp.isfile( args.resume)): # automatically resume from previous checkpoint if args.resume is not None and osp.isfile(args.resume): resume_path = Path(args.resume) elif last_info.exists(): resume_path = last_info else: raise ValueError('Something is wrong.') logger.log("=> loading checkpoint of the last-info '{:}' start".format( resume_path)) checkpoint = torch.load(resume_path) if 'last_checkpoint' in checkpoint: last_checkpoint_path = checkpoint['last_checkpoint'] if not last_checkpoint_path.exists(): logger.log('Does not find {:}, try another path'.format( last_checkpoint_path)) last_checkpoint_path = resume_path.parent / last_checkpoint_path.parent.name / last_checkpoint_path.name assert last_checkpoint_path.exists( ), 'can not find the checkpoint from {:}'.format( last_checkpoint_path) checkpoint = torch.load(last_checkpoint_path) start_epoch = checkpoint['epoch'] + 1 #for key, value in checkpoint['search_model'].items(): # print('K {:} = Shape={:}'.format(key, value.shape)) search_model.load_state_dict(checkpoint['search_model']) scheduler.load_state_dict(checkpoint['scheduler']) base_optimizer.load_state_dict(checkpoint['base_optimizer']) arch_optimizer.load_state_dict(checkpoint['arch_optimizer']) valid_accuracies = checkpoint['valid_accuracies'] arch_genotypes = checkpoint['arch_genotypes'] discrepancies = checkpoint['discrepancies'] max_bytes = checkpoint['max_bytes'] logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(resume_path, start_epoch)) else: logger.log( "=> do not find the last-info file : {:} or resume : {:}".format( last_info, args.resume)) start_epoch, valid_accuracies, arch_genotypes, discrepancies, max_bytes = 0, { 'best': -1 }, {}, {}, {} # main procedure train_func, valid_func = get_procedures(args.procedure) total_epoch = optim_config.epochs + optim_config.warmup start_time, epoch_time = time.time(), AverageMeter() for epoch in range(start_epoch, total_epoch): scheduler.update(epoch, 0.0) search_model.set_tau(args.gumbel_tau_max, args.gumbel_tau_min, epoch * 1.0 / total_epoch) need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (total_epoch - epoch), True)) epoch_str = 'epoch={:03d}/{:03d}'.format(epoch, total_epoch) LRs = scheduler.get_lr() find_best = False logger.log( '\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}, tau={:}, FLOP={:.2f}' .format(time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler, search_model.tau, MAX_FLOP)) # train for one epoch train_base_loss, train_arch_loss, train_acc1, train_acc5 = train_func(search_loader, network, criterion, scheduler, base_optimizer, arch_optimizer, optim_config, \ {'epoch-str' : epoch_str, 'FLOP-exp': MAX_FLOP * args.FLOP_ratio, 'FLOP-weight': args.FLOP_weight, 'FLOP-tolerant': MAX_FLOP * args.FLOP_tolerant}, args.print_freq, logger) # log the results logger.log( '***{:s}*** TRAIN [{:}] base-loss = {:.6f}, arch-loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}' .format(time_string(), epoch_str, train_base_loss, train_arch_loss, train_acc1, train_acc5)) cur_FLOP, genotype = search_model.get_flop('genotype', model_config._asdict(), None) arch_genotypes[epoch] = genotype arch_genotypes['last'] = genotype logger.log('[{:}] genotype : {:}'.format(epoch_str, genotype)) # save the configuration configure2str( genotype, str( logger.path('log') / 'seed-{:}-temp.config'.format(args.rand_seed))) arch_info, discrepancy = search_model.get_arch_info() logger.log(arch_info) discrepancies[epoch] = discrepancy logger.log( '[{:}] FLOP : {:.2f} MB, ratio : {:.4f}, Expected-ratio : {:.4f}, Discrepancy : {:.3f}' .format(epoch_str, cur_FLOP, cur_FLOP / MAX_FLOP, args.FLOP_ratio, np.mean(discrepancy))) #if cur_FLOP/MAX_FLOP > args.FLOP_ratio: # init_flop_weight = init_flop_weight * args.FLOP_decay #else: # init_flop_weight = init_flop_weight / args.FLOP_decay # evaluate the performance if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch): logger.log('-' * 150) valid_loss, valid_acc1, valid_acc5 = valid_func( search_valid_loader, network, criterion, epoch_str, args.print_freq_eval, logger) valid_accuracies[epoch] = valid_acc1 logger.log( '***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}' .format(time_string(), epoch_str, valid_loss, valid_acc1, valid_acc5, valid_accuracies['best'], 100 - valid_accuracies['best'])) if valid_acc1 > valid_accuracies['best']: valid_accuracies['best'] = valid_acc1 arch_genotypes['best'] = genotype find_best = True logger.log( 'Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.' .format(epoch, valid_acc1, valid_acc5, 100 - valid_acc1, 100 - valid_acc5, model_best_path)) # log the GPU memory usage #num_bytes = torch.cuda.max_memory_allocated( next(network.parameters()).device ) * 1.0 num_bytes = torch.cuda.max_memory_cached( next(network.parameters()).device) * 1.0 logger.log( '[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]' .format( next(network.parameters()).device, int(num_bytes), num_bytes / 1e3, num_bytes / 1e6, num_bytes / 1e9)) max_bytes[epoch] = num_bytes # save checkpoint save_path = save_checkpoint( { 'epoch': epoch, 'args': deepcopy(args), 'max_bytes': deepcopy(max_bytes), 'valid_accuracies': deepcopy(valid_accuracies), 'model-config': model_config._asdict(), 'optim-config': optim_config._asdict(), 'search_model': search_model.state_dict(), 'scheduler': scheduler.state_dict(), 'base_optimizer': base_optimizer.state_dict(), 'arch_optimizer': arch_optimizer.state_dict(), 'arch_genotypes': arch_genotypes, 'discrepancies': discrepancies, }, model_base_path, logger) if find_best: copy_checkpoint(model_base_path, model_best_path, logger) last_info = save_checkpoint( { 'epoch': epoch, 'args': deepcopy(args), 'last_checkpoint': save_path, }, logger.path('info'), logger) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log('') logger.log('-' * 100) last_config_path = logger.path('log') / 'seed-{:}-last.config'.format( args.rand_seed) configure2str(arch_genotypes['last'], str(last_config_path)) logger.log('save the last config int {:} :\n{:}'.format( last_config_path, arch_genotypes['last'])) best_arch, valid_acc = arch_genotypes['best'], valid_accuracies['best'] for key, config in arch_genotypes.items(): if key == 'last': continue FLOP_ratio = config['estimated_FLOP'] / MAX_FLOP if abs(FLOP_ratio - args.FLOP_ratio) <= args.FLOP_tolerant: if valid_acc <= valid_accuracies[key]: best_arch, valid_acc = config, valid_accuracies[key] print('Best-Arch : {:}\nRatio={:}, Valid-ACC={:}'.format( best_arch, best_arch['estimated_FLOP'] / MAX_FLOP, valid_acc)) best_config_path = logger.path('log') / 'seed-{:}-best.config'.format( args.rand_seed) configure2str(best_arch, str(best_config_path)) logger.log('save the last config int {:} :\n{:}'.format( best_config_path, best_arch)) logger.log('\n' + '-' * 200) logger.log( 'Finish training/validation in {:} with Max-GPU-Memory of {:.2f} GB, and save final checkpoint into {:}' .format(convert_secs2time(epoch_time.sum, True), max(v for k, v in max_bytes.items()) / 1e9, logger.path('info'))) logger.close()
def main(xargs): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, test_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1) logger.log('use config from : {:}'.format(xargs.config_path)) config = load_config(xargs.config_path, { 'class_num': class_num, 'xshape': xshape }, logger) _, train_loader, valid_loader = get_nas_search_loaders( train_data, test_data, xargs.dataset, 'configs/nas-benchmark/', config.batch_size, xargs.workers) # since ENAS will train the controller on valid-loader, we need to use train transformation for valid-loader valid_loader.dataset.transform = deepcopy(train_loader.dataset.transform) if hasattr(valid_loader.dataset, 'transforms'): valid_loader.dataset.transforms = deepcopy( train_loader.dataset.transforms) # data loader logger.log( '||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}' .format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format( xargs.dataset, config)) search_space = get_search_spaces('cell', xargs.search_space_name) if xargs.model_config is None: model_config = dict2config( { 'name': 'ENAS', 'C': xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, 'num_classes': class_num, 'space': search_space, 'affine': False, 'track_running_stats': bool(xargs.track_running_stats) }, None) else: model_config = load_config( xargs.model_config, { 'num_classes': class_num, 'space': search_space, 'affine': False, 'track_running_stats': bool(xargs.track_running_stats) }, None) shared_cnn = get_cell_based_tiny_net(model_config) controller = shared_cnn.create_controller() w_optimizer, w_scheduler, criterion = get_optim_scheduler( shared_cnn.parameters(), config) a_optimizer = torch.optim.Adam(controller.parameters(), lr=config.controller_lr, betas=config.controller_betas, eps=config.controller_eps) logger.log('w-optimizer : {:}'.format(w_optimizer)) logger.log('a-optimizer : {:}'.format(a_optimizer)) logger.log('w-scheduler : {:}'.format(w_scheduler)) logger.log('criterion : {:}'.format(criterion)) #flop, param = get_model_infos(shared_cnn, xshape) #logger.log('{:}'.format(shared_cnn)) #logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) logger.log('search-space : {:}'.format(search_space)) if xargs.arch_nas_dataset is None: api = None else: api = API(xargs.arch_nas_dataset) logger.log('{:} create API = {:} done'.format(time_string(), api)) shared_cnn, controller, criterion = torch.nn.DataParallel( shared_cnn).cuda(), controller.cuda(), criterion.cuda() last_info, model_base_path, model_best_path = logger.path( 'info'), logger.path('model'), logger.path('best') if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] checkpoint = torch.load(last_info['last_checkpoint']) genotypes = checkpoint['genotypes'] baseline = checkpoint['baseline'] valid_accuracies = checkpoint['valid_accuracies'] shared_cnn.load_state_dict(checkpoint['shared_cnn']) controller.load_state_dict(checkpoint['controller']) w_scheduler.load_state_dict(checkpoint['w_scheduler']) w_optimizer.load_state_dict(checkpoint['w_optimizer']) a_optimizer.load_state_dict(checkpoint['a_optimizer']) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(last_info, start_epoch)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes, baseline = 0, { 'best': -1 }, {}, None # start training start_time, search_time, epoch_time, total_epoch = time.time( ), AverageMeter(), AverageMeter(), config.epochs + config.warmup for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True)) epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) logger.log( '\n[Search the {:}-th epoch] {:}, LR={:}, baseline={:}'.format( epoch_str, need_time, min(w_scheduler.get_lr()), baseline)) cnn_loss, cnn_top1, cnn_top5 = train_shared_cnn( train_loader, shared_cnn, controller, criterion, w_scheduler, w_optimizer, epoch_str, xargs.print_freq, logger) logger.log( '[{:}] shared-cnn : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%' .format(epoch_str, cnn_loss, cnn_top1, cnn_top5)) ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline \ = train_controller(valid_loader, shared_cnn, controller, criterion, a_optimizer, \ dict2config({'baseline': baseline, 'ctl_train_steps': xargs.controller_train_steps, 'ctl_num_aggre': xargs.controller_num_aggregate, 'ctl_entropy_w': xargs.controller_entropy_weight, 'ctl_bl_dec' : xargs.controller_bl_dec}, None), \ epoch_str, xargs.print_freq, logger) search_time.update(time.time() - start_time) logger.log( '[{:}] controller : loss={:.2f}, accuracy={:.2f}%, baseline={:.2f}, reward={:.2f}, current-baseline={:.4f}, time-cost={:.1f} s' .format(epoch_str, ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline, search_time.sum)) best_arch, _ = get_best_arch(controller, shared_cnn, valid_loader) shared_cnn.module.update_arch(best_arch) _, best_valid_acc, _ = valid_func(valid_loader, shared_cnn, criterion) genotypes[epoch] = best_arch # check the best accuracy valid_accuracies[epoch] = best_valid_acc if best_valid_acc > valid_accuracies['best']: valid_accuracies['best'] = best_valid_acc genotypes['best'] = best_arch find_best = True else: find_best = False logger.log('<<<--->>> The {:}-th epoch : {:}'.format( epoch_str, genotypes[epoch])) # save checkpoint save_path = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(xargs), 'baseline': baseline, 'shared_cnn': shared_cnn.state_dict(), 'controller': controller.state_dict(), 'w_optimizer': w_optimizer.state_dict(), 'a_optimizer': a_optimizer.state_dict(), 'w_scheduler': w_scheduler.state_dict(), 'genotypes': genotypes, 'valid_accuracies': valid_accuracies }, model_base_path, logger) last_info = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(args), 'last_checkpoint': save_path, }, logger.path('info'), logger) if find_best: logger.log( '<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.' .format(epoch_str, best_valid_acc)) copy_checkpoint(model_base_path, model_best_path, logger) if api is not None: logger.log('{:}'.format(api.query_by_arch(genotypes[epoch]))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log('\n' + '-' * 100) logger.log('During searching, the best architecture is {:}'.format( genotypes['best'])) logger.log('Its accuracy is {:.2f}%'.format(valid_accuracies['best'])) logger.log('Randomly select {:} architectures and select the best.'.format( xargs.controller_num_samples)) start_time = time.time() final_arch, _ = get_best_arch(controller, shared_cnn, valid_loader, xargs.controller_num_samples) search_time.update(time.time() - start_time) shared_cnn.module.update_arch(final_arch) final_loss, final_top1, final_top5 = valid_func(valid_loader, shared_cnn, criterion) logger.log('The Selected Final Architecture : {:}'.format(final_arch)) logger.log('Loss={:.3f}, Accuracy@1={:.2f}%, Accuracy@5={:.2f}%'.format( final_loss, final_top1, final_top5)) logger.log( 'ENAS : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format( total_epoch, search_time.sum, final_arch)) if api is not None: logger.log('{:}'.format(api.query_by_arch(final_arch))) logger.close()
def main(xargs): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1) if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100': split_Fpath = 'configs/nas-benchmark/cifar-split.txt' cifar_split = load_config(split_Fpath, None, None) train_split, valid_split = cifar_split.train, cifar_split.valid logger.log('Load split file from {:}'.format(split_Fpath)) elif xargs.dataset.startswith('ImageNet16'): split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format( xargs.dataset) imagenet16_split = load_config(split_Fpath, None, None) train_split, valid_split = imagenet16_split.train, imagenet16_split.valid logger.log('Load split file from {:}'.format(split_Fpath)) else: raise ValueError('invalid dataset : {:}'.format(xargs.dataset)) config_path = 'configs/nas-benchmark/algos/DARTS.config' config = load_config(config_path, { 'class_num': class_num, 'xshape': xshape }, logger) # To split data train_data_v2 = deepcopy(train_data) train_data_v2.transform = valid_data.transform valid_data = train_data_v2 search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split) # data loader search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True, num_workers=xargs.workers, pin_memory=True) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) logger.log( '||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}' .format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format( xargs.dataset, config)) search_space = get_search_spaces('cell', xargs.search_space_name) model_config = dict2config( { 'name': 'DARTS-V2', 'C': xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, 'num_classes': class_num, 'space': search_space }, None) search_model = get_cell_based_tiny_net(model_config) logger.log('search-model :\n{:}'.format(search_model)) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.get_weights(), config) a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) logger.log('w-optimizer : {:}'.format(w_optimizer)) logger.log('a-optimizer : {:}'.format(a_optimizer)) logger.log('w-scheduler : {:}'.format(w_scheduler)) logger.log('criterion : {:}'.format(criterion)) flop, param = get_model_infos(search_model, xshape) #logger.log('{:}'.format(search_model)) logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) if xargs.arch_nas_dataset is None: api = None else: api = API(xargs.arch_nas_dataset) logger.log('{:} create API = {:} done'.format(time_string(), api)) last_info, model_base_path, model_best_path = logger.path( 'info'), logger.path('model'), logger.path('best') network, criterion = torch.nn.DataParallel( search_model).cuda(), criterion.cuda() logger.close()
def main(xargs, nas_bench): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10' train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1) split_Fpath = 'configs/nas-benchmark/cifar-split.txt' cifar_split = load_config(split_Fpath, None, None) train_split, valid_split = cifar_split.train, cifar_split.valid logger.log('Load split file from {:}'.format(split_Fpath)) config_path = 'configs/nas-benchmark/algos/R-EA.config' config = load_config(config_path, { 'class_num': class_num, 'xshape': xshape }, logger) # To split data train_data_v2 = deepcopy(train_data) train_data_v2.transform = valid_data.transform valid_data = train_data_v2 search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split) # data loader train_loader = torch.utils.data.DataLoader( train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split), num_workers=xargs.workers, pin_memory=True) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) logger.log( '||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}' .format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format( xargs.dataset, config)) extra_info = { 'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader } # nas dataset load assert xargs.arch_nas_dataset is not None and os.path.isfile( xargs.arch_nas_dataset) search_space = get_search_spaces('cell', xargs.search_space_name) cs = get_configuration_space(xargs.max_nodes, search_space) config2structure = config2structure_func(xargs.max_nodes) hb_run_id = '0' NS = hpns.NameServer(run_id=hb_run_id, host='localhost', port=0) ns_host, ns_port = NS.start() num_workers = 1 #nas_bench = AANASBenchAPI(xargs.arch_nas_dataset) #logger.log('{:} Create NAS-BENCH-API DONE'.format(time_string())) workers = [] for i in range(num_workers): w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, nas_bench=nas_bench, run_id=hb_run_id, id=i) w.run(background=True) workers.append(w) bohb = BOHB(configspace=cs, run_id=hb_run_id, eta=3, min_budget=3, max_budget=108, nameserver=ns_host, nameserver_port=ns_port, num_samples=xargs.num_samples, random_fraction=xargs.random_fraction, bandwidth_factor=xargs.bandwidth_factor, ping_interval=10, min_bandwidth=xargs.min_bandwidth) # optimization_strategy=xargs.strategy, num_samples=xargs.num_samples, results = bohb.run(xargs.n_iters, min_n_workers=num_workers) bohb.shutdown(shutdown_workers=True) NS.shutdown() id2config = results.get_id2config_mapping() incumbent = results.get_incumbent_id() logger.log('Best found configuration: {:}'.format( id2config[incumbent]['config'])) best_arch = config2structure(id2config[incumbent]['config']) info = nas_bench.query_by_arch(best_arch) if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch)) else: logger.log('{:}'.format(info)) logger.log('-' * 100) logger.log('workers : {:}'.format(workers[0].test_time)) logger.close() return logger.log_dir, nas_bench.query_index_by_arch(best_arch)
def main(xargs, nas_bench): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) if xargs.dataset == "cifar10": dataname = "cifar10-valid" else: dataname = xargs.dataset if xargs.data_path is not None: train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1) split_Fpath = "configs/nas-benchmark/cifar-split.txt" cifar_split = load_config(split_Fpath, None, None) train_split, valid_split = cifar_split.train, cifar_split.valid logger.log("Load split file from {:}".format(split_Fpath)) config_path = "configs/nas-benchmark/algos/R-EA.config" config = load_config(config_path, { "class_num": class_num, "xshape": xshape }, logger) # To split data train_data_v2 = deepcopy(train_data) train_data_v2.transform = valid_data.transform valid_data = train_data_v2 search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split) # data loader train_loader = torch.utils.data.DataLoader( train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split), num_workers=xargs.workers, pin_memory=True, ) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True, ) logger.log( "||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}" .format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) logger.log("||||||| {:10s} ||||||| Config={:}".format( xargs.dataset, config)) extra_info = { "config": config, "train_loader": train_loader, "valid_loader": valid_loader, } else: config_path = "configs/nas-benchmark/algos/R-EA.config" config = load_config(config_path, None, logger) logger.log("||||||| {:10s} ||||||| Config={:}".format( xargs.dataset, config)) extra_info = { "config": config, "train_loader": None, "valid_loader": None } # nas dataset load assert xargs.arch_nas_dataset is not None and os.path.isfile( xargs.arch_nas_dataset) search_space = get_search_spaces("cell", xargs.search_space_name) cs = get_configuration_space(xargs.max_nodes, search_space) config2structure = config2structure_func(xargs.max_nodes) hb_run_id = "0" NS = hpns.NameServer(run_id=hb_run_id, host="localhost", port=0) ns_host, ns_port = NS.start() num_workers = 1 # nas_bench = AANASBenchAPI(xargs.arch_nas_dataset) # logger.log('{:} Create NAS-BENCH-API DONE'.format(time_string())) workers = [] for i in range(num_workers): w = MyWorker( nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, dataname=dataname, nas_bench=nas_bench, time_budget=xargs.time_budget, run_id=hb_run_id, id=i, ) w.run(background=True) workers.append(w) start_time = time.time() bohb = BOHB( configspace=cs, run_id=hb_run_id, eta=3, min_budget=12, max_budget=200, nameserver=ns_host, nameserver_port=ns_port, num_samples=xargs.num_samples, random_fraction=xargs.random_fraction, bandwidth_factor=xargs.bandwidth_factor, ping_interval=10, min_bandwidth=xargs.min_bandwidth, ) results = bohb.run(xargs.n_iters, min_n_workers=num_workers) bohb.shutdown(shutdown_workers=True) NS.shutdown() real_cost_time = time.time() - start_time id2config = results.get_id2config_mapping() incumbent = results.get_incumbent_id() logger.log("Best found configuration: {:} within {:.3f} s".format( id2config[incumbent]["config"], real_cost_time)) best_arch = config2structure(id2config[incumbent]["config"]) info = nas_bench.query_by_arch(best_arch, "200") if info is None: logger.log("Did not find this architecture : {:}.".format(best_arch)) else: logger.log("{:}".format(info)) logger.log("-" * 100) logger.log("workers : {:.1f}s with {:} archs".format( workers[0].time_budget, len(workers[0].seen_archs))) logger.close() return logger.log_dir, nas_bench.query_index_by_arch( best_arch), real_cost_time
def main(xargs, myargs): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(xargs) train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1) config = load_config(xargs.config_path, { 'class_num': class_num, 'xshape': xshape }, logger) search_loader, _, valid_loader = get_nas_search_loaders( train_data, valid_data, xargs.dataset, 'AutoDL-Projects/configs/nas-benchmark/', (config.batch_size, config.test_batch_size), xargs.num_worker) logger.log( '||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}' .format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format( xargs.dataset, config)) search_space = get_search_spaces('cell', xargs.search_space_name) if not hasattr(xargs, 'model_config') or xargs.model_config is None: model_config = dict2config( dict(name='SETN', C=xargs.channel, N=xargs.num_cells, max_nodes=xargs.max_nodes, num_classes=class_num, space=search_space, affine=False, track_running_stats=bool(xargs.track_running_stats)), None) else: model_config = load_config( xargs.model_config, dict(num_classes=class_num, space=search_space, affine=False, track_running_stats=bool(xargs.track_running_stats)), None) logger.log('search space : {:}'.format(search_space)) search_model = get_cell_based_tiny_net(model_config) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.get_weights(), config) a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) logger.log('w-optimizer : {:}'.format(w_optimizer)) logger.log('a-optimizer : {:}'.format(a_optimizer)) logger.log('w-scheduler : {:}'.format(w_scheduler)) logger.log('criterion : {:}'.format(criterion)) flop, param = get_model_infos(search_model, xshape) logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) logger.log('search-space : {:}'.format(search_space)) if xargs.arch_nas_dataset is None: api = None else: api = API(xargs.arch_nas_dataset) logger.log('{:} create API = {:} done'.format(time_string(), api)) last_info, model_base_path, model_best_path = logger.path( 'info'), logger.path('model'), logger.path('best') network, criterion = torch.nn.DataParallel( search_model).cuda(), criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] checkpoint = torch.load(last_info['last_checkpoint']) genotypes = checkpoint['genotypes'] valid_accuracies = checkpoint['valid_accuracies'] search_model.load_state_dict(checkpoint['search_model']) w_scheduler.load_state_dict(checkpoint['w_scheduler']) w_optimizer.load_state_dict(checkpoint['w_optimizer']) a_optimizer.load_state_dict(checkpoint['a_optimizer']) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(last_info, start_epoch)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) init_genotype, _ = get_best_arch(valid_loader, network, xargs.select_num) start_epoch, valid_accuracies, genotypes = 0, { 'best': -1 }, { -1: init_genotype } # start training start_time, search_time, epoch_time, total_epoch = time.time( ), AverageMeter(), AverageMeter(), config.epochs + config.warmup for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True)) epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format( epoch_str, need_time, min(w_scheduler.get_lr()))) search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \ = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) search_time.update(time.time() - start_time) logger.log( '[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s' .format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) logger.log( '[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%' .format(epoch_str, search_a_loss, search_a_top1, search_a_top5)) genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num) network.module.set_cal_mode('dynamic', genotype) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion) logger.log( '[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}' .format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype)) #search_model.set_cal_mode('urs') #valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion) #logger.log('[{:}] URS---evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) #search_model.set_cal_mode('joint') #valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion) #logger.log('[{:}] JOINT-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) #search_model.set_cal_mode('select') #valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion) #logger.log('[{:}] Selec-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) # check the best accuracy valid_accuracies[epoch] = valid_a_top1 genotypes[epoch] = genotype logger.log('<<<--->>> The {:}-th epoch : {:}'.format( epoch_str, genotypes[epoch])) # save checkpoint save_path = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(xargs), 'search_model': search_model.state_dict(), 'w_optimizer': w_optimizer.state_dict(), 'a_optimizer': a_optimizer.state_dict(), 'w_scheduler': w_scheduler.state_dict(), 'genotypes': genotypes, 'valid_accuracies': valid_accuracies }, model_base_path, logger) last_info = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(xargs), 'last_checkpoint': save_path, }, logger.path('info'), logger) with torch.no_grad(): logger.log('{:}'.format(search_model.show_alphas())) if api is not None: logger.log('{:}'.format(api.query_by_arch(genotypes[epoch], '200'))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() # the final post procedure : count the time start_time = time.time() genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num) search_time.update(time.time() - start_time) network.module.set_cal_mode('dynamic', genotype) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion) logger.log( 'Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.' .format(genotype, valid_a_top1)) logger.log('\n' + '-' * 100) # check the performance from the architecture dataset logger.log( 'SETN : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format( total_epoch, search_time.sum, genotype)) if api is not None: logger.log('{:}'.format(api.query_by_arch(genotype, '200'))) logger.close()
def main(xargs): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1) if xargs.overwite_epochs is None: extra_info = {'class_num': class_num, 'xshape': xshape} else: extra_info = { 'class_num': class_num, 'xshape': xshape, 'epochs': xargs.overwite_epochs } config = load_config(xargs.config_path, extra_info, logger) search_loader, train_loader, valid_loader = get_nas_search_loaders( train_data, valid_data, xargs.dataset, 'configs/nas-benchmark/', (config.batch_size, config.test_batch_size), xargs.workers) logger.log( '||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}' .format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format( xargs.dataset, config)) search_space = get_search_spaces(xargs.search_space, 'nas-bench-301') model_config = dict2config( dict(name='generic', C=xargs.channel, N=xargs.num_cells, max_nodes=xargs.max_nodes, num_classes=class_num, space=search_space, affine=bool(xargs.affine), track_running_stats=bool(xargs.track_running_stats)), None) logger.log('search space : {:}'.format(search_space)) logger.log('model config : {:}'.format(model_config)) search_model = get_cell_based_tiny_net(model_config) search_model.set_algo(xargs.algo) logger.log('{:}'.format(search_model)) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.weights, config) a_optimizer = torch.optim.Adam(search_model.alphas, lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay, eps=xargs.arch_eps) logger.log('w-optimizer : {:}'.format(w_optimizer)) logger.log('a-optimizer : {:}'.format(a_optimizer)) logger.log('w-scheduler : {:}'.format(w_scheduler)) logger.log('criterion : {:}'.format(criterion)) params = count_parameters_in_MB(search_model) logger.log('The parameters of the search model = {:.2f} MB'.format(params)) logger.log('search-space : {:}'.format(search_space)) if bool(xargs.use_api): api = create(None, 'topology', fast_mode=True, verbose=False) else: api = None logger.log('{:} create API = {:} done'.format(time_string(), api)) last_info, model_base_path, model_best_path = logger.path( 'info'), logger.path('model'), logger.path('best') network, criterion = search_model.cuda(), criterion.cuda( ) # use a single GPU last_info, model_base_path, model_best_path = logger.path( 'info'), logger.path('model'), logger.path('best') if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] checkpoint = torch.load(last_info['last_checkpoint']) genotypes = checkpoint['genotypes'] baseline = checkpoint['baseline'] valid_accuracies = checkpoint['valid_accuracies'] search_model.load_state_dict(checkpoint['search_model']) w_scheduler.load_state_dict(checkpoint['w_scheduler']) w_optimizer.load_state_dict(checkpoint['w_optimizer']) a_optimizer.load_state_dict(checkpoint['a_optimizer']) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(last_info, start_epoch)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes = 0, { 'best': -1 }, { -1: network.return_topK(1, True)[0] } baseline = None # start training start_time, search_time, epoch_time, total_epoch = time.time( ), AverageMeter(), AverageMeter(), config.epochs + config.warmup for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True)) epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format( epoch_str, need_time, min(w_scheduler.get_lr()))) network.set_drop_path( float(epoch + 1) / total_epoch, xargs.drop_path_rate) if xargs.algo == 'gdas': network.set_tau(xargs.tau_max - (xargs.tau_max - xargs.tau_min) * epoch / (total_epoch - 1)) logger.log('[RESET tau as : {:} and drop_path as {:}]'.format( network.tau, network.drop_path)) search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \ = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, xargs.algo, logger) search_time.update(time.time() - start_time) logger.log( '[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s' .format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) logger.log( '[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%' .format(epoch_str, search_a_loss, search_a_top1, search_a_top5)) if xargs.algo == 'enas': ctl_loss, ctl_acc, baseline, ctl_reward \ = train_controller(valid_loader, network, criterion, a_optimizer, baseline, epoch_str, xargs.print_freq, logger) logger.log( '[{:}] controller : loss={:}, acc={:}, baseline={:}, reward={:}' .format(epoch_str, ctl_loss, ctl_acc, baseline, ctl_reward)) genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.eval_candidate_num, xargs.algo) if xargs.algo == 'setn' or xargs.algo == 'enas': network.set_cal_mode('dynamic', genotype) elif xargs.algo == 'gdas': network.set_cal_mode('gdas', None) elif xargs.algo.startswith('darts'): network.set_cal_mode('joint', None) elif xargs.algo == 'random': network.set_cal_mode('urs', None) else: raise ValueError('Invalid algorithm name : {:}'.format(xargs.algo)) logger.log('[{:}] - [get_best_arch] : {:} -> {:}'.format( epoch_str, genotype, temp_accuracy)) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion, xargs.algo, logger) logger.log( '[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}' .format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype)) valid_accuracies[epoch] = valid_a_top1 genotypes[epoch] = genotype logger.log('<<<--->>> The {:}-th epoch : {:}'.format( epoch_str, genotypes[epoch])) # save checkpoint save_path = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(xargs), 'baseline': baseline, 'search_model': search_model.state_dict(), 'w_optimizer': w_optimizer.state_dict(), 'a_optimizer': a_optimizer.state_dict(), 'w_scheduler': w_scheduler.state_dict(), 'genotypes': genotypes, 'valid_accuracies': valid_accuracies }, model_base_path, logger) last_info = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(args), 'last_checkpoint': save_path, }, logger.path('info'), logger) with torch.no_grad(): logger.log('{:}'.format(search_model.show_alphas())) if api is not None: logger.log('{:}'.format(api.query_by_arch(genotypes[epoch], '200'))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() # the final post procedure : count the time start_time = time.time() genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.eval_candidate_num, xargs.algo) if xargs.algo == 'setn' or xargs.algo == 'enas': network.set_cal_mode('dynamic', genotype) elif xargs.algo == 'gdas': network.set_cal_mode('gdas', None) elif xargs.algo.startswith('darts'): network.set_cal_mode('joint', None) elif xargs.algo == 'random': network.set_cal_mode('urs', None) else: raise ValueError('Invalid algorithm name : {:}'.format(xargs.algo)) search_time.update(time.time() - start_time) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion, xargs.algo, logger) logger.log( 'Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.' .format(genotype, valid_a_top1)) logger.log('\n' + '-' * 100) # check the performance from the architecture dataset logger.log('[{:}] run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format( xargs.algo, total_epoch, search_time.sum, genotype)) if api is not None: logger.log('{:}'.format(api.query_by_arch(genotype, '200'))) logger.close()
def main(xargs): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) if os.path.isdir(xargs.save_dir): if click.confirm( '\nSave directory already exists in {}. Erase?'.format( xargs.save_dir, default=False)): os.system('rm -r ' + xargs.save_dir) assert not os.path.exists(xargs.save_dir) os.mkdir(xargs.save_dir) logger = prepare_logger(args) writer = SummaryWriter(xargs.save_dir) perturb_alpha = None if xargs.perturb: perturb_alpha = random_alpha train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1) # config_path = 'configs/nas-benchmark/algos/DARTS.config' config = load_config(xargs.config_path, { 'class_num': class_num, 'xshape': xshape }, logger) search_loader, _, valid_loader = get_nas_search_loaders( train_data, valid_data, xargs.dataset, 'configs/nas-benchmark/', config.batch_size, xargs.workers) logger.log( '||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}' .format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format( xargs.dataset, config)) search_space = get_search_spaces('cell', xargs.search_space_name) if xargs.model_config is None: model_config = dict2config( { 'name': xargs.model, 'C': xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, 'num_classes': class_num, 'space': search_space, 'affine': bool(xargs.affine), 'track_running_stats': bool(xargs.track_running_stats) }, None) else: model_config = load_config( xargs.model_config, { 'num_classes': class_num, 'space': search_space, 'affine': bool(xargs.affine), 'track_running_stats': bool(xargs.track_running_stats) }, None) search_model = get_cell_based_tiny_net(model_config) # logger.log('search-model :\n{:}'.format(search_model)) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.get_weights(), config, xargs.weight_learning_rate) a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) logger.log('w-optimizer : {:}'.format(w_optimizer)) logger.log('a-optimizer : {:}'.format(a_optimizer)) logger.log('w-scheduler : {:}'.format(w_scheduler)) logger.log('criterion : {:}'.format(criterion)) flop, param = get_model_infos(search_model, xshape) # logger.log('{:}'.format(search_model)) logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) if xargs.arch_nas_dataset is None: api = None else: api = API(xargs.arch_nas_dataset) logger.log('{:} create API = {:} done'.format(time_string(), api)) last_info, model_base_path, model_best_path = logger.path( 'info'), logger.path('model'), logger.path('best') network, criterion = torch.nn.DataParallel( search_model).cuda(), criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] checkpoint = torch.load(last_info['last_checkpoint']) genotypes = checkpoint['genotypes'] valid_accuracies = checkpoint['valid_accuracies'] search_model.load_state_dict(checkpoint['search_model']) w_scheduler.load_state_dict(checkpoint['w_scheduler']) w_optimizer.load_state_dict(checkpoint['w_optimizer']) a_optimizer.load_state_dict(checkpoint['a_optimizer']) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(last_info, start_epoch)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes = 0, { 'best': -1 }, { -1: search_model.genotype() } # start training # start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup start_time, search_time, epoch_time = time.time(), AverageMeter( ), AverageMeter() total_epoch = config.epochs + config.warmup assert 0 < xargs.early_stop_epoch <= total_epoch - 1 for epoch in range(start_epoch, total_epoch): if epoch >= xargs.early_stop_epoch: logger.log(f"Early stop @ {epoch} epoch.") break if xargs.perturb: epsilon_alpha = 0.03 + (xargs.epsilon_alpha - 0.03) * epoch / total_epoch logger.log(f'epoch {epoch} epsilon_alpha {epsilon_alpha}') else: epsilon_alpha = None w_scheduler.update(epoch, 0.0) need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True)) epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format( epoch_str, need_time, min(w_scheduler.get_lr()))) search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 = search_func( search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger, xargs.gradient_clip, perturb_alpha, epsilon_alpha) search_time.update(time.time() - start_time) logger.log( '[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s' .format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion) writer.add_scalar('search/weight_loss', search_w_loss, epoch) writer.add_scalar('search/weight_top1_acc', search_w_top1, epoch) writer.add_scalar('search/weight_top5_acc', search_w_top5, epoch) writer.add_scalar('search/arch_loss', search_a_loss, epoch) writer.add_scalar('search/arch_top1_acc', search_a_top1, epoch) writer.add_scalar('search/arch_top5_acc', search_a_top5, epoch) writer.add_scalar('evaluate/loss', valid_a_loss, epoch) writer.add_scalar('evaluate/top1_acc', valid_a_top1, epoch) writer.add_scalar('evaluate/top5_acc', valid_a_top5, epoch) logger.log( '[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%' .format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) writer.add_scalar('entropy', search_model.entropy, epoch) per_edge_dict = get_per_egde_value_dict(search_model.arch_parameters) for edge_name, edge_val in per_edge_dict.items(): writer.add_scalars(f"cell/{edge_name}", edge_val, epoch) # check the best accuracy valid_accuracies[epoch] = valid_a_top1 if valid_a_top1 > valid_accuracies['best']: valid_accuracies['best'] = valid_a_top1 genotypes['best'] = search_model.genotype() find_best = True else: find_best = False genotypes[epoch] = search_model.genotype() logger.log('<<<--->>> The {:}-th epoch : {:}'.format( epoch_str, genotypes[epoch])) # save checkpoint save_path = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(xargs), 'search_model': search_model.state_dict(), 'w_optimizer': w_optimizer.state_dict(), 'a_optimizer': a_optimizer.state_dict(), 'w_scheduler': w_scheduler.state_dict(), 'genotypes': genotypes, 'valid_accuracies': valid_accuracies }, model_base_path, logger) save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(args), 'last_checkpoint': save_path, }, logger.path('info'), logger) if xargs.snapshoot > 0 and epoch % xargs.snapshoot == 0: save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(args), 'search_model': search_model.state_dict(), }, os.path.join(str(logger.model_dir), f"checkpoint_epoch{epoch}.pth"), logger) if find_best: logger.log( '<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.' .format(epoch_str, valid_a_top1)) copy_checkpoint(model_base_path, model_best_path, logger) with torch.no_grad(): logger.log('{:}'.format(search_model.show_alphas())) if api is not None: logger.log('{:}'.format(api.query_by_arch(genotypes[epoch]))) index = api.query_index_by_arch(genotypes[epoch]) info = api.query_meta_info_by_index( index) # This is an instance of `ArchResults` res_metrics = info.get_metrics( f'{xargs.dataset}', 'ori-test') # This is a dict with metric names as keys # cost_metrics = info.get_comput_costs('cifar10') writer.add_scalar(f'{xargs.dataset}_ground_acc_ori-test', res_metrics['accuracy'], epoch) writer.add_scalar(f'{xargs.dataset}_search_acc', valid_a_top1, epoch) if xargs.dataset.lower() != 'cifar10': writer.add_scalar( f'{xargs.dataset}_ground_acc_x-test', info.get_metrics(f'{xargs.dataset}', 'x-test')['accuracy'], epoch) if find_best: valid_accuracies['best_gt'] = res_metrics['accuracy'] writer.add_scalar(f"{xargs.dataset}_cur_best_gt_acc_ori-test", valid_accuracies['best_gt'], epoch) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log('\n' + '-' * 100) logger.log('{:} : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format( args.model, xargs.early_stop_epoch, search_time.sum, genotypes[xargs.early_stop_epoch - 1])) if api is not None: logger.log('{:}'.format( api.query_by_arch(genotypes[xargs.early_stop_epoch - 1]))) logger.close()
def main(args): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True torch.set_num_threads(args.workers) prepare_seed(args.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( args.dataset, args.data_path, args.cutout_length ) train_loader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True, ) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True, ) # get configures model_config = load_config(args.model_config, {"class_num": class_num}, logger) optim_config = load_config(args.optim_config, {"class_num": class_num}, logger) if args.model_source == "normal": base_model = obtain_model(model_config) elif args.model_source == "nas": base_model = obtain_nas_infer_model(model_config, args.extra_model_path) elif args.model_source == "autodl-searched": base_model = obtain_model(model_config, args.extra_model_path) else: raise ValueError("invalid model-source : {:}".format(args.model_source)) flop, param = get_model_infos(base_model, xshape) logger.log("model ====>>>>:\n{:}".format(base_model)) logger.log("model information : {:}".format(base_model.get_message())) logger.log("-" * 50) logger.log( "Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format( param, flop, flop / 1e3 ) ) logger.log("-" * 50) logger.log("train_data : {:}".format(train_data)) logger.log("valid_data : {:}".format(valid_data)) optimizer, scheduler, criterion = get_optim_scheduler( base_model.parameters(), optim_config ) logger.log("optimizer : {:}".format(optimizer)) logger.log("scheduler : {:}".format(scheduler)) logger.log("criterion : {:}".format(criterion)) last_info, model_base_path, model_best_path = ( logger.path("info"), logger.path("model"), logger.path("best"), ) network, criterion = torch.nn.DataParallel(base_model).cuda(), criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log( "=> loading checkpoint of the last-info '{:}' start".format(last_info) ) last_infox = torch.load(last_info) start_epoch = last_infox["epoch"] + 1 last_checkpoint_path = last_infox["last_checkpoint"] if not last_checkpoint_path.exists(): logger.log( "Does not find {:}, try another path".format(last_checkpoint_path) ) last_checkpoint_path = ( last_info.parent / last_checkpoint_path.parent.name / last_checkpoint_path.name ) checkpoint = torch.load(last_checkpoint_path) base_model.load_state_dict(checkpoint["base-model"]) scheduler.load_state_dict(checkpoint["scheduler"]) optimizer.load_state_dict(checkpoint["optimizer"]) valid_accuracies = checkpoint["valid_accuracies"] max_bytes = checkpoint["max_bytes"] logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format( last_info, start_epoch ) ) elif args.resume is not None: assert Path(args.resume).exists(), "Can not find the resume file : {:}".format( args.resume ) checkpoint = torch.load(args.resume) start_epoch = checkpoint["epoch"] + 1 base_model.load_state_dict(checkpoint["base-model"]) scheduler.load_state_dict(checkpoint["scheduler"]) optimizer.load_state_dict(checkpoint["optimizer"]) valid_accuracies = checkpoint["valid_accuracies"] max_bytes = checkpoint["max_bytes"] logger.log( "=> loading checkpoint from '{:}' start with {:}-th epoch.".format( args.resume, start_epoch ) ) elif args.init_model is not None: assert Path( args.init_model ).exists(), "Can not find the initialization file : {:}".format(args.init_model) checkpoint = torch.load(args.init_model) base_model.load_state_dict(checkpoint["base-model"]) start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {} logger.log("=> initialize the model from {:}".format(args.init_model)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {} train_func, valid_func = get_procedures(args.procedure) total_epoch = optim_config.epochs + optim_config.warmup # Main Training and Evaluation Loop start_time = time.time() epoch_time = AverageMeter() for epoch in range(start_epoch, total_epoch): scheduler.update(epoch, 0.0) need_time = "Time Left: {:}".format( convert_secs2time(epoch_time.avg * (total_epoch - epoch), True) ) epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch) LRs = scheduler.get_lr() find_best = False # set-up drop-out ratio if hasattr(base_model, "update_drop_path"): base_model.update_drop_path( model_config.drop_path_prob * epoch / total_epoch ) logger.log( "\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}".format( time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler ) ) # train for one epoch train_loss, train_acc1, train_acc5 = train_func( train_loader, network, criterion, scheduler, optimizer, optim_config, epoch_str, args.print_freq, logger, ) # log the results logger.log( "***{:s}*** TRAIN [{:}] loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}".format( time_string(), epoch_str, train_loss, train_acc1, train_acc5 ) ) # evaluate the performance if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch): logger.log("-" * 150) valid_loss, valid_acc1, valid_acc5 = valid_func( valid_loader, network, criterion, optim_config, epoch_str, args.print_freq_eval, logger, ) valid_accuracies[epoch] = valid_acc1 logger.log( "***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}".format( time_string(), epoch_str, valid_loss, valid_acc1, valid_acc5, valid_accuracies["best"], 100 - valid_accuracies["best"], ) ) if valid_acc1 > valid_accuracies["best"]: valid_accuracies["best"] = valid_acc1 find_best = True logger.log( "Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.".format( epoch, valid_acc1, valid_acc5, 100 - valid_acc1, 100 - valid_acc5, model_best_path, ) ) num_bytes = ( torch.cuda.max_memory_cached(next(network.parameters()).device) * 1.0 ) logger.log( "[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]".format( next(network.parameters()).device, int(num_bytes), num_bytes / 1e3, num_bytes / 1e6, num_bytes / 1e9, ) ) max_bytes[epoch] = num_bytes if epoch % 10 == 0: torch.cuda.empty_cache() # save checkpoint save_path = save_checkpoint( { "epoch": epoch, "args": deepcopy(args), "max_bytes": deepcopy(max_bytes), "FLOP": flop, "PARAM": param, "valid_accuracies": deepcopy(valid_accuracies), "model-config": model_config._asdict(), "optim-config": optim_config._asdict(), "base-model": base_model.state_dict(), "scheduler": scheduler.state_dict(), "optimizer": optimizer.state_dict(), }, model_base_path, logger, ) if find_best: copy_checkpoint(model_base_path, model_best_path, logger) last_info = save_checkpoint( { "epoch": epoch, "args": deepcopy(args), "last_checkpoint": save_path, }, logger.path("info"), logger, ) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log("\n" + "-" * 200) logger.log( "Finish training/validation in {:} with Max-GPU-Memory of {:.2f} MB, and save final checkpoint into {:}".format( convert_secs2time(epoch_time.sum, True), max(v for k, v in max_bytes.items()) / 1e6, logger.path("info"), ) ) logger.log("-" * 200 + "\n") logger.close()
def main(xargs): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1) #config_path = 'configs/nas-benchmark/algos/GDAS.config' config = load_config(xargs.config_path, { 'class_num': class_num, 'xshape': xshape }, logger) search_loader, train_loader, valid_loader = get_nas_search_loaders( train_data, valid_data, xargs.dataset, 'configs/nas-benchmark/', config.batch_size, xargs.workers) logger.log( '||||||| {:10s} ||||||| Search-Loader-Num={:}, batch size={:}'.format( xargs.dataset, len(search_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format( xargs.dataset, config)) search_space = get_search_spaces('cell', xargs.search_space_name) if xargs.model_config is None: model_config = dict2config( { 'name': 'GDAS', 'C': xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, 'num_classes': class_num, 'space': search_space, 'affine': False, 'track_running_stats': bool(xargs.track_running_stats) }, None) else: model_config = load_config( xargs.model_config, { 'num_classes': class_num, 'space': search_space, 'affine': False, 'track_running_stats': bool(xargs.track_running_stats) }, None) search_model = get_cell_based_tiny_net(model_config) logger.log('search-model :\n{:}'.format(search_model)) logger.log('model-config : {:}'.format(model_config)) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.get_weights(), config) logger.log('w-optimizer : {:}'.format(w_optimizer)) logger.log('w-scheduler : {:}'.format(w_scheduler)) logger.log('criterion : {:}'.format(criterion)) flop, param = get_model_infos(search_model, xshape) logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) logger.log('search-space [{:} ops] : {:}'.format(len(search_space), search_space)) if xargs.arch_nas_dataset is None: api = None else: api = API(xargs.arch_nas_dataset) logger.log('{:} create API = {:} done'.format(time_string(), api)) last_info, model_base_path, model_best_path = logger.path( 'info'), logger.path('model'), logger.path('best') network, criterion = torch.nn.DataParallel( search_model).cuda(), criterion.cuda() if False: #last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] checkpoint = torch.load(last_info['last_checkpoint']) search_model.load_state_dict(checkpoint['search_model']) w_scheduler.load_state_dict(checkpoint['w_scheduler']) w_optimizer.load_state_dict(checkpoint['w_optimizer']) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(last_info, start_epoch)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies = 0, {'best': -1} if len(xargs.supernet_path) > 0: saved_info = torch.load(xargs.supernet_path) assert saved_info[ 'epoch'] == 'finished', "Epoch is not finished in this file" search_model.load_state_dict(saved_info['search_model']) else: # start training supernet start_time = time.time() train_shared_cnn(train_loader, network, criterion, w_scheduler, w_optimizer, xargs.print_freq, logger, config, start_epoch) logger.log( 'Supernet trained. Time-cost = {:.1f} s'.format(time.time() - start_time)) # save supernetweight save_path = save_checkpoint( { 'epoch': 'finished', #epoch + 1, 'args': deepcopy(xargs), 'search_model': search_model.state_dict(), 'w_optimizer': w_optimizer.state_dict(), 'w_scheduler': w_scheduler.state_dict() }, model_base_path, logger) last_info = save_checkpoint( { 'epoch': 'finished', #epoch + 1, 'args': deepcopy(args), 'last_checkpoint': save_path, }, logger.path('info'), logger) search_start_time = time.time() searcher = search_model.getSearcher(network, train_loader, valid_loader, logger, config) best_cands, performance_dict, performance_trace = searcher.search() logger.log( 'Architect Searched. Time-cost = {:.1f} s'.format(time.time() - search_start_time)) search_result = save_checkpoint( { 'epoch': 'finished', #epoch + 1, 'args': deepcopy(args), 'genotypes': best_cands, 'performance_dict': performance_dict, 'performance_trace': performance_trace }, model_best_path, logger) logger.close()
def main(xargs): PID = os.getpid() assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True prepare_seed(xargs.rand_seed) if xargs.timestamp == 'none': xargs.timestamp = "{:}".format( time.strftime('%h-%d-%C_%H-%M-%s', time.gmtime(time.time()))) train_data, valid_data, xshape, class_num = get_datasets(xargs, -1) ##### config & logging ##### config = edict() config.class_num = class_num config.xshape = xshape config.batch_size = xargs.batch_size xargs.save_dir = xargs.save_dir + \ "/repeat%d-prunNum%d-prec%d-%s-batch%d"%( xargs.repeat, xargs.prune_number, xargs.precision, xargs.init, config["batch_size"]) + \ "/{:}/seed{:}".format(xargs.timestamp, xargs.rand_seed) config.save_dir = xargs.save_dir logger = prepare_logger(xargs) ############### if xargs.dataset in [ 'MiniImageNet', 'MetaMiniImageNet', 'TieredImageNet', 'MetaTieredImageNet' ]: train_loader = torch.utils.data.DataLoader(train_data, batch_size=xargs.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) elif xargs.dataset != 'imagenet-1k': search_loader, train_loader, valid_loader = get_nas_search_loaders( train_data, valid_data, xargs.dataset, 'configs/', config.batch_size, xargs.workers) else: train_loader = torch.utils.data.DataLoader(train_data, batch_size=xargs.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) logger.log( '||||||| {:10s} ||||||| Train-Loader-Num={:}, batch size={:}'.format( xargs.dataset, len(train_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format( xargs.dataset, config)) search_space = get_search_spaces('cell', xargs.search_space_name) if xargs.search_space_name == 'nas-bench-201': model_config = edict({ 'name': 'DARTS-V1', 'C': 3, 'N': 1, 'depth': -1, 'use_stem': True, 'max_nodes': xargs.max_nodes, 'num_classes': class_num, 'space': search_space, 'affine': True, 'track_running_stats': bool(xargs.track_running_stats), }) model_config_thin = edict({ 'name': 'DARTS-V1', 'C': 1, 'N': 1, 'depth': 1, 'use_stem': False, 'max_nodes': xargs.max_nodes, 'num_classes': class_num, 'space': search_space, 'affine': True, 'track_running_stats': bool(xargs.track_running_stats), }) elif xargs.search_space_name in ['darts', 'darts_fewshot']: model_config = edict({ 'name': 'DARTS-V1', 'C': 1, 'N': 1, 'depth': 2, 'use_stem': True, 'stem_multiplier': 1, 'num_classes': class_num, 'space': search_space, 'affine': True, 'track_running_stats': bool(xargs.track_running_stats), 'super_type': xargs.super_type, 'steps': xargs.max_nodes, 'multiplier': xargs.max_nodes, }) model_config_thin = edict({ 'name': 'DARTS-V1', 'C': 1, 'N': 1, 'depth': 2, 'use_stem': False, 'stem_multiplier': 1, 'max_nodes': xargs.max_nodes, 'num_classes': class_num, 'space': search_space, 'affine': True, 'track_running_stats': bool(xargs.track_running_stats), 'super_type': xargs.super_type, 'steps': xargs.max_nodes, 'multiplier': xargs.max_nodes, }) network = get_cell_based_tiny_net(model_config) logger.log('model-config : {:}'.format(model_config)) arch_parameters = [ alpha.detach().clone() for alpha in network.get_alphas() ] for alpha in arch_parameters: alpha[:, :] = 0 # TODO Linear_Region_Collector lrc_model = Linear_Region_Collector(xargs, input_size=(1000, 1, 3, 3), sample_batch=3, dataset=xargs.dataset, data_path=xargs.data_path, seed=xargs.rand_seed) # ### all params trainable (except train_bn) ######################### flop, param = get_model_infos(network, xshape) logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) logger.log('search-space [{:} ops] : {:}'.format(len(search_space), search_space)) if xargs.arch_nas_dataset is None or xargs.search_space_name in [ 'darts', 'darts_fewshot' ]: api = None else: api = API(xargs.arch_nas_dataset) logger.log('{:} create API = {:} done'.format(time_string(), api)) network = network.cuda() genotypes = {} genotypes['arch'] = { -1: network.genotype() } arch_parameters_history = [] arch_parameters_history_npy = [] start_time = time.time() epoch = -1 for alpha in arch_parameters: alpha[:, 0] = -INF arch_parameters_history.append( [alpha.detach().clone() for alpha in arch_parameters]) arch_parameters_history_npy.append( [alpha.detach().clone().cpu().numpy() for alpha in arch_parameters]) np.save(os.path.join(xargs.save_dir, "arch_parameters_history.npy"), arch_parameters_history_npy) while not is_single_path(network): epoch += 1 torch.cuda.empty_cache() print("<< ============== JOB (PID = %d) %s ============== >>" % (PID, '/'.join(xargs.save_dir.split("/")[-6:]))) arch_parameters, op_pruned = prune_func_rank( xargs, arch_parameters, model_config, model_config_thin, train_loader, lrc_model, search_space, precision=xargs.precision, prune_number=xargs.prune_number) # rebuild supernet network = get_cell_based_tiny_net(model_config) network = network.cuda() network.set_alphas(arch_parameters) arch_parameters_history.append( [alpha.detach().clone() for alpha in arch_parameters]) arch_parameters_history_npy.append([ alpha.detach().clone().cpu().numpy() for alpha in arch_parameters ]) np.save(os.path.join(xargs.save_dir, "arch_parameters_history.npy"), arch_parameters_history_npy) genotypes['arch'][epoch] = network.genotype() logger.log('operators remaining (1s) and prunned (0s)\n{:}'.format( '\n'.join([ str((alpha > -INF).int()) for alpha in network.get_alphas() ]))) if xargs.search_space_name in ['darts', 'darts_fewshot']: print("===>>> Prune Edge Groups...") if xargs.max_nodes == 4: edge_groups = [(0, 2), (2, 5), (5, 9), (9, 14)] elif xargs.max_nodes == 3: edge_groups = [(0, 2), (2, 5), (5, 9)] arch_parameters = prune_func_rank_group( xargs, arch_parameters, model_config, model_config_thin, train_loader, lrc_model, search_space, edge_groups=edge_groups, num_per_group=2, precision=xargs.precision, ) network = get_cell_based_tiny_net(model_config) network = network.cuda() network.set_alphas(arch_parameters) arch_parameters_history.append( [alpha.detach().clone() for alpha in arch_parameters]) arch_parameters_history_npy.append([ alpha.detach().clone().cpu().numpy() for alpha in arch_parameters ]) np.save(os.path.join(xargs.save_dir, "arch_parameters_history.npy"), arch_parameters_history_npy) logger.log('<<<--->>> End: {:}'.format(network.genotype())) logger.log('operators remaining (1s) and prunned (0s)\n{:}'.format( '\n'.join( [str((alpha > -INF).int()) for alpha in network.get_alphas()]))) end_time = time.time() logger.log('\n' + '-' * 100) logger.log("Time spent: %d s" % (end_time - start_time)) # check the performance from the architecture dataset if api is not None: logger.log('{:}'.format(api.query_by_arch(genotypes['arch'][epoch]))) logger.close()
def main(xargs, nas_bench): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) if xargs.dataset == 'cifar10': dataname = 'cifar10-valid' else: dataname = xargs.dataset if xargs.data_path is not None: train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1) split_Fpath = 'configs/nas-benchmark/cifar-split.txt' cifar_split = load_config(split_Fpath, None, None) train_split, valid_split = cifar_split.train, cifar_split.valid logger.log('Load split file from {:}'.format(split_Fpath)) config_path = 'configs/nas-benchmark/algos/R-EA.config' config = load_config(config_path, { 'class_num': class_num, 'xshape': xshape }, logger) # To split data train_data_v2 = deepcopy(train_data) train_data_v2.transform = valid_data.transform valid_data = train_data_v2 search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split) # data loader train_loader = torch.utils.data.DataLoader( train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split), num_workers=xargs.workers, pin_memory=True) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) logger.log( '||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}' .format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format( xargs.dataset, config)) extra_info = { 'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader } else: config_path = 'configs/nas-benchmark/algos/R-EA.config' config = load_config(config_path, None, logger) extra_info = { 'config': config, 'train_loader': None, 'valid_loader': None } logger.log('||||||| {:10s} ||||||| Config={:}'.format( xargs.dataset, config)) search_space = get_search_spaces('cell', xargs.search_space_name) policy = Policy(xargs.max_nodes, search_space) optimizer = torch.optim.Adam(policy.parameters(), lr=xargs.learning_rate) #optimizer = torch.optim.SGD(policy.parameters(), lr=xargs.learning_rate) eps = np.finfo(np.float32).eps.item() baseline = ExponentialMovingAverage(xargs.EMA_momentum) logger.log('policy : {:}'.format(policy)) logger.log('optimizer : {:}'.format(optimizer)) logger.log('eps : {:}'.format(eps)) # nas dataset load logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench)) # REINFORCE # attempts = 0 x_start_time = time.time() logger.log('Will start searching with time budget of {:} s.'.format( xargs.time_budget)) total_steps, total_costs, trace = 0, 0, [] #for istep in range(xargs.RL_steps): while total_costs < xargs.time_budget: start_time = time.time() log_prob, action = select_action(policy) arch = policy.generate_arch(action) reward, cost_time = train_and_eval(arch, nas_bench, extra_info, dataname) trace.append((reward, arch)) # accumulate time if total_costs + cost_time < xargs.time_budget: total_costs += cost_time else: break baseline.update(reward) # calculate loss policy_loss = (-log_prob * (reward - baseline.value())).sum() optimizer.zero_grad() policy_loss.backward() optimizer.step() # accumulate time total_costs += time.time() - start_time total_steps += 1 logger.log( 'step [{:3d}] : average-reward={:.3f} : policy_loss={:.4f} : {:}'. format(total_steps, baseline.value(), policy_loss.item(), policy.genotype())) #logger.log('----> {:}'.format(policy.arch_parameters)) #logger.log('') # best_arch = policy.genotype() # first version best_arch = max(trace, key=lambda x: x[0])[1] logger.log( 'REINFORCE finish with {:} steps and {:.1f} s (real cost={:.3f}).'. format(total_steps, total_costs, time.time() - x_start_time)) info = nas_bench.query_by_arch(best_arch) if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch)) else: logger.log('{:}'.format(info)) logger.log('-' * 100) logger.close() return logger.log_dir, nas_bench.query_index_by_arch(best_arch)
def main(args): prepare_seed(args.rand_seed) logger = prepare_logger(args) cache_path = (logger.path(None) / ".." / "env-info.pth").resolve() if cache_path.exists(): env_info = torch.load(cache_path) else: env_info = dict() dynamic_env = get_synthetic_env() env_info["total"] = len(dynamic_env) for idx, (timestamp, (_allx, _ally)) in enumerate(tqdm(dynamic_env)): env_info["{:}-timestamp".format(idx)] = timestamp env_info["{:}-x".format(idx)] = _allx env_info["{:}-y".format(idx)] = _ally env_info["dynamic_env"] = dynamic_env torch.save(env_info, cache_path) # check indexes to be evaluated to_evaluate_indexes = split_str2indexes(args.srange, env_info["total"], None) logger.log( "Evaluate {:}, which has {:} timestamps in total.".format( args.srange, len(to_evaluate_indexes) ) ) per_timestamp_time, start_time = AverageMeter(), time.time() for i, idx in enumerate(to_evaluate_indexes): need_time = "Time Left: {:}".format( convert_secs2time( per_timestamp_time.avg * (len(to_evaluate_indexes) - i), True ) ) logger.log( "[{:}]".format(time_string()) + " [{:04d}/{:04d}][{:04d}]".format(i, len(to_evaluate_indexes), idx) + " " + need_time ) # train the same data assert idx != 0 historical_x, historical_y = [], [] for past_i in range(idx): historical_x.append(env_info["{:}-x".format(past_i)]) historical_y.append(env_info["{:}-y".format(past_i)]) historical_x, historical_y = torch.cat(historical_x), torch.cat(historical_y) historical_x, historical_y = subsample(historical_x, historical_y) # build model mean, std = historical_x.mean().item(), historical_x.std().item() model_kwargs = dict(input_dim=1, output_dim=1, mean=mean, std=std) model = get_model(dict(model_type="simple_mlp"), **model_kwargs) # build optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True) criterion = torch.nn.MSELoss() lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=[ int(args.epochs * 0.25), int(args.epochs * 0.5), int(args.epochs * 0.75), ], gamma=0.3, ) train_metric = MSEMetric() best_loss, best_param = None, None for _iepoch in range(args.epochs): preds = model(historical_x) optimizer.zero_grad() loss = criterion(preds, historical_y) loss.backward() optimizer.step() lr_scheduler.step() # save best if best_loss is None or best_loss > loss.item(): best_loss = loss.item() best_param = copy.deepcopy(model.state_dict()) model.load_state_dict(best_param) with torch.no_grad(): train_metric(preds, historical_y) train_results = train_metric.get_info() metric = ComposeMetric(MSEMetric(), SaveMetric()) eval_dataset = torch.utils.data.TensorDataset( env_info["{:}-x".format(idx)], env_info["{:}-y".format(idx)] ) eval_loader = torch.utils.data.DataLoader( eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0 ) results = basic_eval_fn(eval_loader, model, metric, logger) log_str = ( "[{:}]".format(time_string()) + " [{:04d}/{:04d}]".format(idx, env_info["total"]) + " train-mse: {:.5f}, eval-mse: {:.5f}".format( train_results["mse"], results["mse"] ) ) logger.log(log_str) save_path = logger.path(None) / "{:04d}-{:04d}.pth".format( idx, env_info["total"] ) save_checkpoint( { "model_state_dict": model.state_dict(), "model": model, "index": idx, "timestamp": env_info["{:}-timestamp".format(idx)], }, save_path, logger, ) logger.log("") per_timestamp_time.update(time.time() - start_time) start_time = time.time() logger.log("-" * 200 + "\n") logger.close()
def main(xargs): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1) assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10' if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100': split_Fpath = 'configs/nas-benchmark/cifar-split.txt' cifar_split = load_config(split_Fpath, None, None) train_split, valid_split = cifar_split.train, cifar_split.valid logger.log('Load split file from {:}'.format(split_Fpath)) elif xargs.dataset.startswith('ImageNet16'): split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format( xargs.dataset) imagenet16_split = load_config(split_Fpath, None, None) train_split, valid_split = imagenet16_split.train, imagenet16_split.valid logger.log('Load split file from {:}'.format(split_Fpath)) else: raise ValueError('invalid dataset : {:}'.format(xargs.dataset)) #config_path = 'configs/nas-benchmark/algos/SETN.config' config = load_config(xargs.config_path, { 'class_num': class_num, 'xshape': xshape }, logger) # To split data train_data_v2 = deepcopy(train_data) train_data_v2.transform = valid_data.transform valid_data = train_data_v2 search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split) # data loader search_loader = torch.utils.data.DataLoader(search_data, batch_size=config.batch_size, shuffle=True, num_workers=xargs.workers, pin_memory=True) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=config.test_batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) logger.log( '||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}' .format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format( xargs.dataset, config)) search_space = get_search_spaces('cell', xargs.search_space_name) model_config = dict2config( { 'name': 'SETN', 'C': xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, 'num_classes': class_num, 'space': search_space, 'affine': False, 'track_running_stats': bool(xargs.track_running_stats) }, None) logger.log('search space : {:}'.format(search_space)) search_model = get_cell_based_tiny_net(model_config) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.get_weights(), config) a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) logger.log('w-optimizer : {:}'.format(w_optimizer)) logger.log('a-optimizer : {:}'.format(a_optimizer)) logger.log('w-scheduler : {:}'.format(w_scheduler)) logger.log('criterion : {:}'.format(criterion)) flop, param = get_model_infos(search_model, xshape) #logger.log('{:}'.format(search_model)) logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) logger.log('search-space : {:}'.format(search_space)) if xargs.arch_nas_dataset is None: api = None else: api = API(xargs.arch_nas_dataset) logger.log('{:} create API = {:} done'.format(time_string(), api)) last_info, model_base_path, model_best_path = logger.path( 'info'), logger.path('model'), logger.path('best') network, criterion = torch.nn.DataParallel( search_model).cuda(), criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] checkpoint = torch.load(last_info['last_checkpoint']) genotypes = checkpoint['genotypes'] valid_accuracies = checkpoint['valid_accuracies'] search_model.load_state_dict(checkpoint['search_model']) w_scheduler.load_state_dict(checkpoint['w_scheduler']) w_optimizer.load_state_dict(checkpoint['w_optimizer']) a_optimizer.load_state_dict(checkpoint['a_optimizer']) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(last_info, start_epoch)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {} # start training start_time, search_time, epoch_time, total_epoch = time.time( ), AverageMeter(), AverageMeter(), config.epochs + config.warmup for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True)) epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format( epoch_str, need_time, min(w_scheduler.get_lr()))) search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \ = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) search_time.update(time.time() - start_time) logger.log( '[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s' .format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) logger.log( '[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%' .format(epoch_str, search_a_loss, search_a_top1, search_a_top5)) genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num) network.module.set_cal_mode('dynamic', genotype) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion) logger.log( '[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}' .format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype)) #search_model.set_cal_mode('urs') #valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion) #logger.log('[{:}] URS---evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) #search_model.set_cal_mode('joint') #valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion) #logger.log('[{:}] JOINT-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) #search_model.set_cal_mode('select') #valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion) #logger.log('[{:}] Selec-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) # check the best accuracy valid_accuracies[epoch] = valid_a_top1 genotypes[epoch] = genotype logger.log('<<<--->>> The {:}-th epoch : {:}'.format( epoch_str, genotypes[epoch])) # save checkpoint save_path = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(xargs), 'search_model': search_model.state_dict(), 'w_optimizer': w_optimizer.state_dict(), 'a_optimizer': a_optimizer.state_dict(), 'w_scheduler': w_scheduler.state_dict(), 'genotypes': genotypes, 'valid_accuracies': valid_accuracies }, model_base_path, logger) last_info = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(args), 'last_checkpoint': save_path, }, logger.path('info'), logger) with torch.no_grad(): logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu())) if api is not None: logger.log('{:}'.format(api.query_by_arch(genotypes[epoch]))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() # the final post procedure : count the time start_time = time.time() genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num) search_time.update(time.time() - start_time) network.module.set_cal_mode('dynamic', genotype) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion) logger.log( 'Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.' .format(genotype, valid_a_top1)) logger.log('\n' + '-' * 100) # check the performance from the architecture dataset logger.log( 'SETN : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format( total_epoch, search_time.sum, genotype)) if api is not None: logger.log('{:}'.format(api.query_by_arch(genotype))) logger.close()
def main(xargs): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads( xargs.workers ) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, test_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100': split_Fpath = 'configs/nas-benchmark/cifar-split.txt' cifar_split = load_config(split_Fpath, None, None) train_split, valid_split = cifar_split.train, cifar_split.valid logger.log('Load split file from {:}'.format(split_Fpath)) elif xargs.dataset.startswith('ImageNet16'): split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset) imagenet16_split = load_config(split_Fpath, None, None) train_split, valid_split = imagenet16_split.train, imagenet16_split.valid logger.log('Load split file from {:}'.format(split_Fpath)) else: raise ValueError('invalid dataset : {:}'.format(xargs.dataset)) logger.log('use config from : {:}'.format(xargs.config_path)) config = load_config(xargs.config_path, {'class_num': class_num, 'xshape': xshape}, logger) logger.log('config: {:}'.format(config)) # To split data train_data_v2 = deepcopy(train_data) train_data_v2.transform = test_data.transform valid_data = train_data_v2 # data loader train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split), num_workers=xargs.workers, pin_memory=True) valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) search_space = get_search_spaces('cell', xargs.search_space_name) model_config = dict2config({'name': 'ENAS', 'C': xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, 'num_classes': class_num, 'space' : search_space}, None) shared_cnn = get_cell_based_tiny_net(model_config) controller = shared_cnn.create_controller() w_optimizer, w_scheduler, criterion = get_optim_scheduler(shared_cnn.parameters(), config) a_optimizer = torch.optim.Adam(controller.parameters(), lr=config.controller_lr, betas=config.controller_betas, eps=config.controller_eps) logger.log('w-optimizer : {:}'.format(w_optimizer)) logger.log('a-optimizer : {:}'.format(a_optimizer)) logger.log('w-scheduler : {:}'.format(w_scheduler)) logger.log('criterion : {:}'.format(criterion)) #flop, param = get_model_infos(shared_cnn, xshape) #logger.log('{:}'.format(shared_cnn)) #logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) shared_cnn, controller, criterion = torch.nn.DataParallel(shared_cnn).cuda(), controller.cuda(), criterion.cuda() last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best') if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] checkpoint = torch.load(last_info['last_checkpoint']) genotypes = checkpoint['genotypes'] baseline = checkpoint['baseline'] valid_accuracies = checkpoint['valid_accuracies'] shared_cnn.load_state_dict( checkpoint['shared_cnn'] ) controller.load_state_dict( checkpoint['controller'] ) w_scheduler.load_state_dict ( checkpoint['w_scheduler'] ) w_optimizer.load_state_dict ( checkpoint['w_optimizer'] ) a_optimizer.load_state_dict ( checkpoint['a_optimizer'] ) logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes, baseline = 0, {'best': -1}, {}, None # start training start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) ) epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) logger.log('\n[Search the {:}-th epoch] {:}, LR={:}, baseline={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()), baseline)) cnn_loss, cnn_top1, cnn_top5 = train_shared_cnn(train_loader, shared_cnn, controller, criterion, w_scheduler, w_optimizer, epoch_str, xargs.print_freq, logger) logger.log('[{:}] shared-cnn : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, cnn_loss, cnn_top1, cnn_top5)) ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline \ = train_controller(valid_loader, shared_cnn, controller, criterion, a_optimizer, \ dict2config({'baseline': baseline, 'ctl_train_steps': xargs.controller_train_steps, 'ctl_num_aggre': xargs.controller_num_aggregate, 'ctl_entropy_w': xargs.controller_entropy_weight, 'ctl_bl_dec' : xargs.controller_bl_dec}, None), \ epoch_str, xargs.print_freq, logger) logger.log('[{:}] controller : loss={:.2f}, accuracy={:.2f}%, baseline={:.2f}, reward={:.2f}, current-baseline={:.4f}'.format(epoch_str, ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline)) best_arch, _ = get_best_arch(controller, shared_cnn, valid_loader) shared_cnn.module.update_arch(best_arch) _, best_valid_acc, _ = valid_func(valid_loader, shared_cnn, criterion) genotypes[epoch] = best_arch # check the best accuracy valid_accuracies[epoch] = best_valid_acc if best_valid_acc > valid_accuracies['best']: valid_accuracies['best'] = best_valid_acc genotypes['best'] = best_arch find_best = True else: find_best = False logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch])) # save checkpoint save_path = save_checkpoint({'epoch' : epoch + 1, 'args' : deepcopy(xargs), 'baseline' : baseline, 'shared_cnn' : shared_cnn.state_dict(), 'controller' : controller.state_dict(), 'w_optimizer' : w_optimizer.state_dict(), 'a_optimizer' : a_optimizer.state_dict(), 'w_scheduler' : w_scheduler.state_dict(), 'genotypes' : genotypes, 'valid_accuracies' : valid_accuracies}, model_base_path, logger) last_info = save_checkpoint({ 'epoch': epoch + 1, 'args' : deepcopy(args), 'last_checkpoint': save_path, }, logger.path('info'), logger) if find_best: logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, best_valid_acc)) copy_checkpoint(model_base_path, model_best_path, logger) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log('\n' + '-'*100) logger.log('During searching, the best architecture is {:}'.format(genotypes['best'])) logger.log('Its accuracy is {:.2f}%'.format(valid_accuracies['best'])) logger.log('Randomly select {:} architectures and select the best.'.format(xargs.controller_num_samples)) final_arch, _ = get_best_arch(controller, shared_cnn, valid_loader, xargs.controller_num_samples) shared_cnn.module.update_arch(final_arch) final_loss, final_top1, final_top5 = valid_func(valid_loader, shared_cnn, criterion) logger.log('The Selected Final Architecture : {:}'.format(final_arch)) logger.log('Loss={:.3f}, Accuracy@1={:.2f}%, Accuracy@5={:.2f}%'.format(final_loss, final_top1, final_top5)) # check the performance from the architecture dataset #if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset): # logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset)) #else: # nas_bench = NASBenchmarkAPI(xargs.arch_nas_dataset) # geno = genotypes[total_epoch-1] # logger.log('The last model is {:}'.format(geno)) # info = nas_bench.query_by_arch( geno ) # if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) # else : logger.log('{:}'.format(info)) # logger.log('-'*100) # geno = genotypes['best'] # logger.log('The best model is {:}'.format(geno)) # info = nas_bench.query_by_arch( geno ) # if info is None: logger.log('Did not find this architecture : {:}.'.format(geno)) # else : logger.log('{:}'.format(info)) logger.close()
def main(xargs): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1) config = load_config(xargs.config_path, { "class_num": class_num, "xshape": xshape }, logger) search_loader, _, valid_loader = get_nas_search_loaders( train_data, valid_data, xargs.dataset, "configs/nas-benchmark/", (config.batch_size, config.test_batch_size), xargs.workers, ) logger.log( "||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}" .format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) logger.log("||||||| {:10s} ||||||| Config={:}".format( xargs.dataset, config)) search_space = get_search_spaces("cell", xargs.search_space_name) if xargs.model_config is None: model_config = dict2config( dict( name="SETN", C=xargs.channel, N=xargs.num_cells, max_nodes=xargs.max_nodes, num_classes=class_num, space=search_space, affine=False, track_running_stats=bool(xargs.track_running_stats), ), None, ) else: model_config = load_config( xargs.model_config, dict( num_classes=class_num, space=search_space, affine=False, track_running_stats=bool(xargs.track_running_stats), ), None, ) logger.log("search space : {:}".format(search_space)) search_model = get_cell_based_tiny_net(model_config) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.get_weights(), config) a_optimizer = torch.optim.Adam( search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay, ) logger.log("w-optimizer : {:}".format(w_optimizer)) logger.log("a-optimizer : {:}".format(a_optimizer)) logger.log("w-scheduler : {:}".format(w_scheduler)) logger.log("criterion : {:}".format(criterion)) flop, param = get_model_infos(search_model, xshape) logger.log("FLOP = {:.2f} M, Params = {:.2f} MB".format(flop, param)) logger.log("search-space : {:}".format(search_space)) if xargs.arch_nas_dataset is None: api = None else: api = API(xargs.arch_nas_dataset) logger.log("{:} create API = {:} done".format(time_string(), api)) last_info, model_base_path, model_best_path = ( logger.path("info"), logger.path("model"), logger.path("best"), ) network, criterion = torch.nn.DataParallel( search_model).cuda(), criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info["epoch"] checkpoint = torch.load(last_info["last_checkpoint"]) genotypes = checkpoint["genotypes"] valid_accuracies = checkpoint["valid_accuracies"] search_model.load_state_dict(checkpoint["search_model"]) w_scheduler.load_state_dict(checkpoint["w_scheduler"]) w_optimizer.load_state_dict(checkpoint["w_optimizer"]) a_optimizer.load_state_dict(checkpoint["a_optimizer"]) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(last_info, start_epoch)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) init_genotype, _ = get_best_arch(valid_loader, network, xargs.select_num) start_epoch, valid_accuracies, genotypes = 0, { "best": -1 }, { -1: init_genotype } # start training start_time, search_time, epoch_time, total_epoch = ( time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup, ) for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = "Time Left: {:}".format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True)) epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch) logger.log("\n[Search the {:}-th epoch] {:}, LR={:}".format( epoch_str, need_time, min(w_scheduler.get_lr()))) ( search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5, ) = search_func( search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger, ) search_time.update(time.time() - start_time) logger.log( "[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s" .format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) logger.log( "[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%" .format(epoch_str, search_a_loss, search_a_top1, search_a_top5)) genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num) network.module.set_cal_mode("dynamic", genotype) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion) logger.log( "[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}" .format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype)) # search_model.set_cal_mode('urs') # valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion) # logger.log('[{:}] URS---evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) # search_model.set_cal_mode('joint') # valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion) # logger.log('[{:}] JOINT-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) # search_model.set_cal_mode('select') # valid_a_loss , valid_a_top1 , valid_a_top5 = valid_func(valid_loader, network, criterion) # logger.log('[{:}] Selec-evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) # check the best accuracy valid_accuracies[epoch] = valid_a_top1 genotypes[epoch] = genotype logger.log("<<<--->>> The {:}-th epoch : {:}".format( epoch_str, genotypes[epoch])) # save checkpoint save_path = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(xargs), "search_model": search_model.state_dict(), "w_optimizer": w_optimizer.state_dict(), "a_optimizer": a_optimizer.state_dict(), "w_scheduler": w_scheduler.state_dict(), "genotypes": genotypes, "valid_accuracies": valid_accuracies, }, model_base_path, logger, ) last_info = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(args), "last_checkpoint": save_path, }, logger.path("info"), logger, ) with torch.no_grad(): logger.log("{:}".format(search_model.show_alphas())) if api is not None: logger.log("{:}".format(api.query_by_arch(genotypes[epoch], "200"))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() # the final post procedure : count the time start_time = time.time() genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.select_num) search_time.update(time.time() - start_time) network.module.set_cal_mode("dynamic", genotype) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion) logger.log( "Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%." .format(genotype, valid_a_top1)) logger.log("\n" + "-" * 100) # check the performance from the architecture dataset logger.log( "SETN : run {:} epochs, cost {:.1f} s, last-geno is {:}.".format( total_epoch, search_time.sum, genotype)) if api is not None: logger.log("{:}".format(api.query_by_arch(genotype, "200"))) logger.close()
def main(xargs): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1) config = load_config(xargs.config_path, { 'class_num': class_num, 'xshape': xshape }, logger) search_loader, _, valid_loader = get_nas_search_loaders(train_data, valid_data, xargs.dataset, 'configs/nas-benchmark/', \ (config.batch_size, config.test_batch_size), xargs.workers) logger.log( '||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}' .format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format( xargs.dataset, config)) search_space = get_search_spaces('cell', xargs.search_space_name) model_config = dict2config( { 'name': 'RANDOM', 'C': xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, 'num_classes': class_num, 'space': search_space, 'affine': False, 'track_running_stats': bool(xargs.track_running_stats) }, None) search_model = get_cell_based_tiny_net(model_config) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.parameters(), config) logger.log('w-optimizer : {:}'.format(w_optimizer)) logger.log('w-scheduler : {:}'.format(w_scheduler)) logger.log('criterion : {:}'.format(criterion)) if xargs.arch_nas_dataset is None: api = None else: api = API(xargs.arch_nas_dataset) logger.log('{:} create API = {:} done'.format(time_string(), api)) last_info, model_base_path, model_best_path = logger.path( 'info'), logger.path('model'), logger.path('best') network, criterion = torch.nn.DataParallel( search_model).cuda(), criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] checkpoint = torch.load(last_info['last_checkpoint']) genotypes = checkpoint['genotypes'] valid_accuracies = checkpoint['valid_accuracies'] search_model.load_state_dict(checkpoint['search_model']) w_scheduler.load_state_dict(checkpoint['w_scheduler']) w_optimizer.load_state_dict(checkpoint['w_optimizer']) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(last_info, start_epoch)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {} # start training start_time, search_time, epoch_time, total_epoch = time.time( ), AverageMeter(), AverageMeter(), config.epochs + config.warmup for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True)) epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format( epoch_str, need_time, min(w_scheduler.get_lr()))) # selected_arch = search_find_best(valid_loader, network, criterion, xargs.select_num) search_w_loss, search_w_top1, search_w_top5 = search_func( search_loader, network, criterion, w_scheduler, w_optimizer, epoch_str, xargs.print_freq, logger) search_time.update(time.time() - start_time) logger.log( '[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s' .format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion) logger.log( '[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%' .format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) cur_arch, cur_valid_acc = search_find_best(valid_loader, network, xargs.select_num) logger.log('[{:}] find-the-best : {:}, accuracy@1={:.2f}%'.format( epoch_str, cur_arch, cur_valid_acc)) genotypes[epoch] = cur_arch # check the best accuracy valid_accuracies[epoch] = valid_a_top1 if valid_a_top1 > valid_accuracies['best']: valid_accuracies['best'] = valid_a_top1 find_best = True else: find_best = False # save checkpoint save_path = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(xargs), 'search_model': search_model.state_dict(), 'w_optimizer': w_optimizer.state_dict(), 'w_scheduler': w_scheduler.state_dict(), 'genotypes': genotypes, 'valid_accuracies': valid_accuracies }, model_base_path, logger) last_info = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(args), 'last_checkpoint': save_path, }, logger.path('info'), logger) if find_best: logger.log( '<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.' .format(epoch_str, valid_a_top1)) copy_checkpoint(model_base_path, model_best_path, logger) if api is not None: logger.log('{:}'.format(api.query_by_arch(genotypes[epoch]))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log('\n' + '-' * 200) logger.log('Pre-searching costs {:.1f} s'.format(search_time.sum)) start_time = time.time() best_arch, best_acc = search_find_best(valid_loader, network, xargs.select_num) search_time.update(time.time() - start_time) logger.log( 'RANDOM-NAS finds the best one : {:} with accuracy={:.2f}%, with {:.1f} s.' .format(best_arch, best_acc, search_time.sum)) if api is not None: logger.log('{:}'.format(api.query_by_arch(best_arch))) logger.close()
def main(args): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True torch.set_num_threads(args.workers) prepare_seed(args.rand_seed) logger = prepare_logger(args) # prepare dataset train_data, valid_data, xshape, class_num = get_datasets( args.dataset, args.data_path, args.cutout_length) # train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True , num_workers=args.workers, pin_memory=True) valid_loader = torch.utils.data.DataLoader( valid_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True, ) split_file_path = Path(args.split_path) assert split_file_path.exists(), "{:} does not exist".format( split_file_path) split_info = torch.load(split_file_path) train_split, valid_split = split_info["train"], split_info["valid"] assert (len(set(train_split).intersection(set(valid_split))) == 0 ), "There should be 0 element that belongs to both train and valid" assert len(train_split) + len(valid_split) == len( train_data), "{:} + {:} vs {:}".format(len(train_split), len(valid_split), len(train_data)) search_dataset = SearchDataset(args.dataset, train_data, train_split, valid_split) search_train_loader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split), pin_memory=True, num_workers=args.workers, ) search_valid_loader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), pin_memory=True, num_workers=args.workers, ) search_loader = torch.utils.data.DataLoader( search_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True, sampler=None, ) # get configures model_config = load_config( args.model_config, { "class_num": class_num, "search_mode": args.search_shape }, logger, ) # obtain the model search_model = obtain_search_model(model_config) MAX_FLOP, param = get_model_infos(search_model, xshape) optim_config = load_config(args.optim_config, { "class_num": class_num, "FLOP": MAX_FLOP }, logger) logger.log("Model Information : {:}".format(search_model.get_message())) logger.log("MAX_FLOP = {:} M".format(MAX_FLOP)) logger.log("Params = {:} M".format(param)) logger.log("train_data : {:}".format(train_data)) logger.log("search-data: {:}".format(search_dataset)) logger.log("search_train_loader : {:} samples".format(len(train_split))) logger.log("search_valid_loader : {:} samples".format(len(valid_split))) base_optimizer, scheduler, criterion = get_optim_scheduler( search_model.base_parameters(), optim_config) arch_optimizer = torch.optim.Adam( search_model.arch_parameters(), lr=optim_config.arch_LR, betas=(0.5, 0.999), weight_decay=optim_config.arch_decay, ) logger.log("base-optimizer : {:}".format(base_optimizer)) logger.log("arch-optimizer : {:}".format(arch_optimizer)) logger.log("scheduler : {:}".format(scheduler)) logger.log("criterion : {:}".format(criterion)) last_info, model_base_path, model_best_path = ( logger.path("info"), logger.path("model"), logger.path("best"), ) network, criterion = torch.nn.DataParallel( search_model).cuda(), criterion.cuda() # load checkpoint if last_info.exists() or (args.resume is not None and osp.isfile( args.resume)): # automatically resume from previous checkpoint if args.resume is not None and osp.isfile(args.resume): resume_path = Path(args.resume) elif last_info.exists(): resume_path = last_info else: raise ValueError("Something is wrong.") logger.log("=> loading checkpoint of the last-info '{:}' start".format( resume_path)) checkpoint = torch.load(resume_path) if "last_checkpoint" in checkpoint: last_checkpoint_path = checkpoint["last_checkpoint"] if not last_checkpoint_path.exists(): logger.log("Does not find {:}, try another path".format( last_checkpoint_path)) last_checkpoint_path = (resume_path.parent / last_checkpoint_path.parent.name / last_checkpoint_path.name) assert (last_checkpoint_path.exists() ), "can not find the checkpoint from {:}".format( last_checkpoint_path) checkpoint = torch.load(last_checkpoint_path) start_epoch = checkpoint["epoch"] + 1 search_model.load_state_dict(checkpoint["search_model"]) scheduler.load_state_dict(checkpoint["scheduler"]) base_optimizer.load_state_dict(checkpoint["base_optimizer"]) arch_optimizer.load_state_dict(checkpoint["arch_optimizer"]) valid_accuracies = checkpoint["valid_accuracies"] arch_genotypes = checkpoint["arch_genotypes"] discrepancies = checkpoint["discrepancies"] logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(resume_path, start_epoch)) else: logger.log( "=> do not find the last-info file : {:} or resume : {:}".format( last_info, args.resume)) start_epoch, valid_accuracies, arch_genotypes, discrepancies = ( 0, { "best": -1 }, {}, {}, ) # main procedure train_func, valid_func = get_procedures(args.procedure) total_epoch = optim_config.epochs + optim_config.warmup start_time, epoch_time = time.time(), AverageMeter() for epoch in range(start_epoch, total_epoch): scheduler.update(epoch, 0.0) search_model.set_tau(args.gumbel_tau_max, args.gumbel_tau_min, epoch * 1.0 / total_epoch) need_time = "Time Left: {:}".format( convert_secs2time(epoch_time.avg * (total_epoch - epoch), True)) epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch) LRs = scheduler.get_lr() find_best = False logger.log( "\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}, tau={:}, FLOP={:.2f}" .format( time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler, search_model.tau, MAX_FLOP, )) # train for one epoch train_base_loss, train_arch_loss, train_acc1, train_acc5 = train_func( search_loader, network, criterion, scheduler, base_optimizer, arch_optimizer, optim_config, { "epoch-str": epoch_str, "FLOP-exp": MAX_FLOP * args.FLOP_ratio, "FLOP-weight": args.FLOP_weight, "FLOP-tolerant": MAX_FLOP * args.FLOP_tolerant, }, args.print_freq, logger, ) # log the results logger.log( "***{:s}*** TRAIN [{:}] base-loss = {:.6f}, arch-loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}" .format( time_string(), epoch_str, train_base_loss, train_arch_loss, train_acc1, train_acc5, )) cur_FLOP, genotype = search_model.get_flop("genotype", model_config._asdict(), None) arch_genotypes[epoch] = genotype arch_genotypes["last"] = genotype logger.log("[{:}] genotype : {:}".format(epoch_str, genotype)) arch_info, discrepancy = search_model.get_arch_info() logger.log(arch_info) discrepancies[epoch] = discrepancy logger.log( "[{:}] FLOP : {:.2f} MB, ratio : {:.4f}, Expected-ratio : {:.4f}, Discrepancy : {:.3f}" .format( epoch_str, cur_FLOP, cur_FLOP / MAX_FLOP, args.FLOP_ratio, np.mean(discrepancy), )) # if cur_FLOP/MAX_FLOP > args.FLOP_ratio: # init_flop_weight = init_flop_weight * args.FLOP_decay # else: # init_flop_weight = init_flop_weight / args.FLOP_decay # evaluate the performance if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch): logger.log("-" * 150) valid_loss, valid_acc1, valid_acc5 = valid_func( search_valid_loader, network, criterion, epoch_str, args.print_freq_eval, logger, ) valid_accuracies[epoch] = valid_acc1 logger.log( "***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}" .format( time_string(), epoch_str, valid_loss, valid_acc1, valid_acc5, valid_accuracies["best"], 100 - valid_accuracies["best"], )) if valid_acc1 > valid_accuracies["best"]: valid_accuracies["best"] = valid_acc1 arch_genotypes["best"] = genotype find_best = True logger.log( "Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}." .format( epoch, valid_acc1, valid_acc5, 100 - valid_acc1, 100 - valid_acc5, model_best_path, )) # save checkpoint save_path = save_checkpoint( { "epoch": epoch, "args": deepcopy(args), "valid_accuracies": deepcopy(valid_accuracies), "model-config": model_config._asdict(), "optim-config": optim_config._asdict(), "search_model": search_model.state_dict(), "scheduler": scheduler.state_dict(), "base_optimizer": base_optimizer.state_dict(), "arch_optimizer": arch_optimizer.state_dict(), "arch_genotypes": arch_genotypes, "discrepancies": discrepancies, }, model_base_path, logger, ) if find_best: copy_checkpoint(model_base_path, model_best_path, logger) last_info = save_checkpoint( { "epoch": epoch, "args": deepcopy(args), "last_checkpoint": save_path, }, logger.path("info"), logger, ) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log("") logger.log("-" * 100) last_config_path = logger.path("log") / "seed-{:}-last.config".format( args.rand_seed) configure2str(arch_genotypes["last"], str(last_config_path)) logger.log("save the last config int {:} :\n{:}".format( last_config_path, arch_genotypes["last"])) best_arch, valid_acc = arch_genotypes["best"], valid_accuracies["best"] for key, config in arch_genotypes.items(): if key == "last": continue FLOP_ratio = config["estimated_FLOP"] / MAX_FLOP if abs(FLOP_ratio - args.FLOP_ratio) <= args.FLOP_tolerant: if valid_acc < valid_accuracies[key]: best_arch, valid_acc = config, valid_accuracies[key] print("Best-Arch : {:}\nRatio={:}, Valid-ACC={:}".format( best_arch, best_arch["estimated_FLOP"] / MAX_FLOP, valid_acc)) best_config_path = logger.path("log") / "seed-{:}-best.config".format( args.rand_seed) configure2str(best_arch, str(best_config_path)) logger.log("save the last config int {:} :\n{:}".format( best_config_path, best_arch)) logger.log("\n" + "-" * 200) logger.log( "Finish training/validation in {:}, and save final checkpoint into {:}" .format(convert_secs2time(epoch_time.sum, True), logger.path("info"))) logger.close()
def main(xargs): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1) #config_path = 'configs/nas-benchmark/algos/GDAS.config' config = load_config(xargs.config_path, { 'class_num': class_num, 'xshape': xshape }, logger) search_loader, _, valid_loader = get_nas_search_loaders( train_data, valid_data, xargs.dataset, 'configs/nas-benchmark/', config.batch_size, xargs.workers) logger.log( '||||||| {:10s} ||||||| Search-Loader-Num={:}, batch size={:}'.format( xargs.dataset, len(search_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format( xargs.dataset, config)) search_space = get_search_spaces('cell', xargs.search_space_name) if xargs.model_config is None and not args.constrain: model_config = dict2config( { 'name': 'GDAS', 'C': xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, 'num_classes': class_num, 'space': search_space, 'inp_size': 0, 'affine': False, 'track_running_stats': bool(xargs.track_running_stats) }, None) elif xargs.model_config is None: model_config = dict2config( { 'name': 'GDAS', 'C': xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, 'num_classes': class_num, 'space': search_space, 'inp_size': 32, 'affine': False, 'track_running_stats': bool(xargs.track_running_stats) }, None) else: model_config = load_config( xargs.model_config, { 'num_classes': class_num, 'space': search_space, 'affine': False, 'track_running_stats': bool(xargs.track_running_stats) }, None) search_model = get_cell_based_tiny_net(model_config) #logger.log('search-model :\n{:}'.format(search_model)) logger.log('model-config : {:}'.format(model_config)) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.get_weights(), config) a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) logger.log('w-optimizer : {:}'.format(w_optimizer)) logger.log('a-optimizer : {:}'.format(a_optimizer)) logger.log('w-scheduler : {:}'.format(w_scheduler)) logger.log('criterion : {:}'.format(criterion)) flop, param = get_model_infos(search_model, xshape) #logger.log('{:}'.format(search_model)) logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) logger.log('search-space [{:} ops] : {:}'.format(len(search_space), search_space)) if xargs.arch_nas_dataset is None: api = None else: api = API(xargs.arch_nas_dataset) logger.log('{:} create API = {:} done'.format(time_string(), api)) last_info, model_base_path, model_best_path = logger.path( 'info'), logger.path('model'), logger.path('best') network, criterion = torch.nn.DataParallel( search_model).cuda(), criterion.cuda() #network, criterion = search_model.cuda(), criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] checkpoint = torch.load(last_info['last_checkpoint']) genotypes = checkpoint['genotypes'] valid_accuracies = checkpoint['valid_accuracies'] search_model.load_state_dict(checkpoint['search_model']) w_scheduler.load_state_dict(checkpoint['w_scheduler']) w_optimizer.load_state_dict(checkpoint['w_optimizer']) a_optimizer.load_state_dict(checkpoint['a_optimizer']) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(last_info, start_epoch)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes = 0, { 'best': -1 }, { -1: search_model.genotype() } # start training start_time, search_time, epoch_time, total_epoch = time.time( ), AverageMeter(), AverageMeter(), config.epochs + config.warmup sampled_weights = [] for epoch in range(start_epoch, total_epoch + config.t_epochs): w_scheduler.update(epoch, 0.0) need_time = 'Time Left: {:}'.format( convert_secs2time( epoch_time.val * (total_epoch - epoch + config.t_epochs), True)) epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) search_model.set_tau(xargs.tau_max - (xargs.tau_max - xargs.tau_min) * epoch / (total_epoch - 1)) logger.log('\n[Search the {:}-th epoch] {:}, tau={:}, LR={:}'.format( epoch_str, need_time, search_model.get_tau(), min(w_scheduler.get_lr()))) if epoch < total_epoch: search_w_loss, search_w_top1, search_w_top5, valid_a_loss , valid_a_top1 , valid_a_top5 \ = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger, xargs.bilevel) else: search_w_loss, search_w_top1, search_w_top5, valid_a_loss , valid_a_top1 , valid_a_top5, arch_iter \ = train_func(search_loader, network, criterion, w_scheduler, w_optimizer, epoch_str, xargs.print_freq, sampled_weights[0], arch_iter, logger) search_time.update(time.time() - start_time) logger.log( '[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s' .format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) logger.log( '[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%' .format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) if (epoch + 1) % 50 == 0 and not config.t_epochs: weights = search_model.sample_weights(100) sampled_weights.append(weights) elif (epoch + 1) == total_epoch and config.t_epochs: weights = search_model.sample_weights(100) sampled_weights.append(weights) arch_iter = iter(weights) # validate with single arch single_weight = search_model.sample_weights(1)[0] single_valid_acc = AverageMeter() network.eval() for i in range(10): try: val_input, val_target = next(valid_iter) except Exception as e: valid_iter = iter(valid_loader) val_input, val_target = next(valid_iter) n_val = val_input.size(0) with torch.no_grad(): val_target = val_target.cuda(non_blocking=True) _, logits, _ = network(val_input, weights=single_weight) val_acc1, val_acc5 = obtain_accuracy(logits.data, val_target.data, topk=(1, 5)) single_valid_acc.update(val_acc1.item(), n_val) logger.log('[{:}] valid : accuracy = {:.2f}'.format( epoch_str, single_valid_acc.avg)) # check the best accuracy valid_accuracies[epoch] = valid_a_top1 if valid_a_top1 > valid_accuracies['best']: valid_accuracies['best'] = valid_a_top1 genotypes['best'] = search_model.genotype() find_best = True else: find_best = False if epoch < total_epoch: genotypes[epoch] = search_model.genotype() logger.log('<<<--->>> The {:}-th epoch : {:}'.format( epoch_str, genotypes[epoch])) # save checkpoint save_path = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(xargs), 'search_model': search_model.state_dict(), 'w_optimizer': w_optimizer.state_dict(), 'a_optimizer': a_optimizer.state_dict(), 'w_scheduler': w_scheduler.state_dict(), 'genotypes': genotypes, 'valid_accuracies': valid_accuracies }, model_base_path, logger) last_info = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(args), 'last_checkpoint': save_path, }, logger.path('info'), logger) if find_best: logger.log( '<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.' .format(epoch_str, valid_a_top1)) copy_checkpoint(model_base_path, model_best_path, logger) with torch.no_grad(): logger.log('{:}'.format(search_model.show_alphas())) if api is not None and epoch < total_epoch: logger.log('{:}'.format(api.query_by_arch(genotypes[epoch]))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() network.eval() # Evaluate the architectures sampled throughout the search for i in range(len(sampled_weights) - 1): logger.log('Sample eval : epoch {}'.format((i + 1) * 50 - 1)) for w in sampled_weights[i]: sample_valid_acc = AverageMeter() for i in range(10): try: val_input, val_target = next(valid_iter) except Exception as e: valid_iter = iter(valid_loader) val_input, val_target = next(valid_iter) n_val = val_input.size(0) with torch.no_grad(): val_target = val_target.cuda(non_blocking=True) _, logits, _ = network(val_input, weights=w) val_acc1, val_acc5 = obtain_accuracy(logits.data, val_target.data, topk=(1, 5)) sample_valid_acc.update(val_acc1.item(), n_val) w_gene = search_model.genotype(w) if api is not None: ind = api.query_index_by_arch(w_gene) info = api.query_meta_info_by_index(ind) metrics = info.get_metrics('cifar10', 'ori-test') acc = metrics['accuracy'] else: acc = 0.0 logger.log( 'sample valid : val_acc = {:.2f} test_acc = {:.2f}'.format( sample_valid_acc.avg, acc)) # Evaluate the final sampling separately to find the top 10 architectures logger.log('Final sample eval') final_archs = [] for w in sampled_weights[-1]: sample_valid_acc = AverageMeter() for i in range(10): try: val_input, val_target = next(valid_iter) except Exception as e: valid_iter = iter(valid_loader) val_input, val_target = next(valid_iter) n_val = val_input.size(0) with torch.no_grad(): val_target = val_target.cuda(non_blocking=True) _, logits, _ = network(val_input, weights=w) val_acc1, val_acc5 = obtain_accuracy(logits.data, val_target.data, topk=(1, 5)) sample_valid_acc.update(val_acc1.item(), n_val) w_gene = search_model.genotype(w) if api is not None: ind = api.query_index_by_arch(w_gene) info = api.query_meta_info_by_index(ind) metrics = info.get_metrics('cifar10', 'ori-test') acc = metrics['accuracy'] else: acc = 0.0 logger.log('sample valid : val_acc = {:.2f} test_acc = {:.2f}'.format( sample_valid_acc.avg, acc)) final_archs.append((w, sample_valid_acc.avg)) top_10 = sorted(final_archs, key=lambda x: x[1], reverse=True)[:10] # Evaluate the top 10 architectures on the entire validation set logger.log('Evaluating top archs') for w, prev_acc in top_10: full_valid_acc = AverageMeter() for val_input, val_target in valid_loader: n_val = val_input.size(0) with torch.no_grad(): val_target = val_target.cuda(non_blocking=True) _, logits, _ = network(val_input, weights=w) val_acc1, val_acc5 = obtain_accuracy(logits.data, val_target.data, topk=(1, 5)) full_valid_acc.update(val_acc1.item(), n_val) w_gene = search_model.genotype(w) logger.log('genotype {}'.format(w_gene)) if api is not None: ind = api.query_index_by_arch(w_gene) info = api.query_meta_info_by_index(ind) metrics = info.get_metrics('cifar10', 'ori-test') acc = metrics['accuracy'] else: acc = 0.0 logger.log( 'full valid : val_acc = {:.2f} test_acc = {:.2f} pval_acc = {:.2f}' .format(full_valid_acc.avg, acc, prev_acc)) logger.log('\n' + '-' * 100) # check the performance from the architecture dataset logger.log( 'GDAS : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format( total_epoch, search_time.sum, genotypes[total_epoch - 1])) if api is not None: logger.log('{:}'.format(api.query_by_arch(genotypes[total_epoch - 1]))) logger.close()
def main(xargs): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1) #config_path = 'configs/nas-benchmark/algos/GDAS.config' config = load_config(xargs.config_path, { 'class_num': class_num, 'xshape': xshape }, logger) search_loader, _, valid_loader = get_nas_search_loaders( train_data, valid_data, xargs.dataset, 'configs/nas-benchmark/', config.batch_size, xargs.workers) logger.log( '||||||| {:10s} ||||||| Search-Loader-Num={:}, batch size={:}'.format( xargs.dataset, len(search_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format( xargs.dataset, config)) search_space = get_search_spaces('cell', xargs.search_space_name) if xargs.model_config is None: model_config = dict2config( { 'name': 'GDAS', 'C': xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, 'num_classes': class_num, 'space': search_space, 'affine': False, 'track_running_stats': bool(xargs.track_running_stats) }, None) else: model_config = load_config( xargs.model_config, { 'num_classes': class_num, 'space': search_space, 'affine': False, 'track_running_stats': bool(xargs.track_running_stats) }, None) search_model = get_cell_based_tiny_net(model_config) logger.log('search-model :\n{:}'.format(search_model)) logger.log('model-config : {:}'.format(model_config)) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.get_weights(), config) a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) logger.log('w-optimizer : {:}'.format(w_optimizer)) logger.log('a-optimizer : {:}'.format(a_optimizer)) logger.log('w-scheduler : {:}'.format(w_scheduler)) logger.log('criterion : {:}'.format(criterion)) flop, param = get_model_infos(search_model, xshape) logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) logger.log('search-space [{:} ops] : {:}'.format(len(search_space), search_space)) if xargs.arch_nas_dataset is None: api = None else: api = API(xargs.arch_nas_dataset) logger.log('{:} create API = {:} done'.format(time_string(), api)) last_info, model_base_path, model_best_path = logger.path( 'info'), logger.path('model'), logger.path('best') network, criterion = torch.nn.DataParallel( search_model).cuda(), criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] checkpoint = torch.load(last_info['last_checkpoint']) genotypes = checkpoint['genotypes'] valid_accuracies = checkpoint['valid_accuracies'] search_model.load_state_dict(checkpoint['search_model']) w_scheduler.load_state_dict(checkpoint['w_scheduler']) w_optimizer.load_state_dict(checkpoint['w_optimizer']) a_optimizer.load_state_dict(checkpoint['a_optimizer']) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(last_info, start_epoch)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes = 0, { 'best': -1 }, { -1: search_model.genotype() } # start training start_time, search_time, epoch_time, total_epoch = time.time( ), AverageMeter(), AverageMeter(), config.epochs + config.warmup for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True)) epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch) search_model.set_tau(xargs.tau_max - (xargs.tau_max - xargs.tau_min) * epoch / (total_epoch - 1)) logger.log('\n[Search the {:}-th epoch] {:}, tau={:}, LR={:}'.format( epoch_str, need_time, search_model.get_tau(), min(w_scheduler.get_lr()))) search_w_loss, search_w_top1, search_w_top5, valid_a_loss , valid_a_top1 , valid_a_top5 \ = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger) search_time.update(time.time() - start_time) logger.log( '[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s' .format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum)) logger.log( '[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%' .format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5)) # check the best accuracy valid_accuracies[epoch] = valid_a_top1 if valid_a_top1 > valid_accuracies['best']: valid_accuracies['best'] = valid_a_top1 genotypes['best'] = search_model.genotype() find_best = True else: find_best = False genotypes[epoch] = search_model.genotype() logger.log('<<<--->>> The {:}-th epoch : {:}'.format( epoch_str, genotypes[epoch])) # save checkpoint save_path = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(xargs), 'search_model': search_model.state_dict(), 'w_optimizer': w_optimizer.state_dict(), 'a_optimizer': a_optimizer.state_dict(), 'w_scheduler': w_scheduler.state_dict(), 'genotypes': genotypes, 'valid_accuracies': valid_accuracies }, model_base_path, logger) last_info = save_checkpoint( { 'epoch': epoch + 1, 'args': deepcopy(args), 'last_checkpoint': save_path, }, logger.path('info'), logger) if find_best: logger.log( '<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.' .format(epoch_str, valid_a_top1)) copy_checkpoint(model_base_path, model_best_path, logger) with torch.no_grad(): logger.log('{:}'.format(search_model.show_alphas())) if api is not None: logger.log('{:}'.format(api.query_by_arch(genotypes[epoch], '200'))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log('\n' + '-' * 100) # check the performance from the architecture dataset logger.log( 'GDAS : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format( total_epoch, search_time.sum, genotypes[total_epoch - 1])) if api is not None: logger.log('{:}'.format( api.query_by_arch(genotypes[total_epoch - 1], '200'))) logger.close()
def main(args): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True #torch.backends.cudnn.deterministic = True torch.set_num_threads(args.workers) prepare_seed(args.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( args.dataset, args.data_path, args.cutout_length) train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) # get configures model_config = load_config(args.model_config, {'class_num': class_num}, logger) optim_config = load_config( args.optim_config, { 'class_num': class_num, 'KD_alpha': args.KD_alpha, 'KD_temperature': args.KD_temperature }, logger) # load checkpoint teacher_base = load_net_from_checkpoint(args.KD_checkpoint) teacher = torch.nn.DataParallel(teacher_base).cuda() base_model = obtain_model(model_config) flop, param = get_model_infos(base_model, xshape) logger.log('Student ====>>>>:\n{:}'.format(base_model)) logger.log('Teacher ====>>>>:\n{:}'.format(teacher_base)) logger.log('model information : {:}'.format(base_model.get_message())) logger.log('-' * 50) logger.log('Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G'.format( param, flop, flop / 1e3)) logger.log('-' * 50) logger.log('train_data : {:}'.format(train_data)) logger.log('valid_data : {:}'.format(valid_data)) optimizer, scheduler, criterion = get_optim_scheduler( base_model.parameters(), optim_config) logger.log('optimizer : {:}'.format(optimizer)) logger.log('scheduler : {:}'.format(scheduler)) logger.log('criterion : {:}'.format(criterion)) last_info, model_base_path, model_best_path = logger.path( 'info'), logger.path('model'), logger.path('best') network, criterion = torch.nn.DataParallel( base_model).cuda(), criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] + 1 checkpoint = torch.load(last_info['last_checkpoint']) base_model.load_state_dict(checkpoint['base-model']) scheduler.load_state_dict(checkpoint['scheduler']) optimizer.load_state_dict(checkpoint['optimizer']) valid_accuracies = checkpoint['valid_accuracies'] max_bytes = checkpoint['max_bytes'] logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch." .format(last_info, start_epoch)) elif args.resume is not None: assert Path( args.resume).exists(), 'Can not find the resume file : {:}'.format( args.resume) checkpoint = torch.load(args.resume) start_epoch = checkpoint['epoch'] + 1 base_model.load_state_dict(checkpoint['base-model']) scheduler.load_state_dict(checkpoint['scheduler']) optimizer.load_state_dict(checkpoint['optimizer']) valid_accuracies = checkpoint['valid_accuracies'] max_bytes = checkpoint['max_bytes'] logger.log( "=> loading checkpoint from '{:}' start with {:}-th epoch.".format( args.resume, start_epoch)) elif args.init_model is not None: assert Path(args.init_model).exists( ), 'Can not find the initialization file : {:}'.format(args.init_model) checkpoint = torch.load(args.init_model) base_model.load_state_dict(checkpoint['base-model']) start_epoch, valid_accuracies, max_bytes = 0, {'best': -1}, {} logger.log('=> initialize the model from {:}'.format(args.init_model)) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, max_bytes = 0, {'best': -1}, {} train_func, valid_func = get_procedures(args.procedure) total_epoch = optim_config.epochs + optim_config.warmup # Main Training and Evaluation Loop start_time = time.time() epoch_time = AverageMeter() for epoch in range(start_epoch, total_epoch): scheduler.update(epoch, 0.0) need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (total_epoch - epoch), True)) epoch_str = 'epoch={:03d}/{:03d}'.format(epoch, total_epoch) LRs = scheduler.get_lr() find_best = False logger.log( '\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}' .format(time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler)) # train for one epoch train_loss, train_acc1, train_acc5 = train_func( train_loader, teacher, network, criterion, scheduler, optimizer, optim_config, epoch_str, args.print_freq, logger) # log the results logger.log( '***{:s}*** TRAIN [{:}] loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}' .format(time_string(), epoch_str, train_loss, train_acc1, train_acc5)) # evaluate the performance if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch): logger.log('-' * 150) valid_loss, valid_acc1, valid_acc5 = valid_func( valid_loader, teacher, network, criterion, optim_config, epoch_str, args.print_freq_eval, logger) valid_accuracies[epoch] = valid_acc1 logger.log( '***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}' .format(time_string(), epoch_str, valid_loss, valid_acc1, valid_acc5, valid_accuracies['best'], 100 - valid_accuracies['best'])) if valid_acc1 > valid_accuracies['best']: valid_accuracies['best'] = valid_acc1 find_best = True logger.log( 'Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.' .format(epoch, valid_acc1, valid_acc5, 100 - valid_acc1, 100 - valid_acc5, model_best_path)) num_bytes = torch.cuda.max_memory_cached( next(network.parameters()).device) * 1.0 logger.log( '[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]' .format( next(network.parameters()).device, int(num_bytes), num_bytes / 1e3, num_bytes / 1e6, num_bytes / 1e9)) max_bytes[epoch] = num_bytes if epoch % 10 == 0: torch.cuda.empty_cache() # save checkpoint save_path = save_checkpoint( { 'epoch': epoch, 'args': deepcopy(args), 'max_bytes': deepcopy(max_bytes), 'FLOP': flop, 'PARAM': param, 'valid_accuracies': deepcopy(valid_accuracies), 'model-config': model_config._asdict(), 'optim-config': optim_config._asdict(), 'base-model': base_model.state_dict(), 'scheduler': scheduler.state_dict(), 'optimizer': optimizer.state_dict(), }, model_base_path, logger) if find_best: copy_checkpoint(model_base_path, model_best_path, logger) last_info = save_checkpoint( { 'epoch': epoch, 'args': deepcopy(args), 'last_checkpoint': save_path, }, logger.path('info'), logger) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log('\n' + '-' * 200) logger.log('||| Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G'.format( param, flop, flop / 1e3)) logger.log( 'Finish training/validation in {:} with Max-GPU-Memory of {:.2f} MB, and save final checkpoint into {:}' .format(convert_secs2time(epoch_time.sum, True), max(v for k, v in max_bytes.items()) / 1e6, logger.path('info'))) logger.log('-' * 200 + '\n') logger.close()