示例#1
0
 def slow_tregex(sents, **dummy_args):
     """do the speaker-specific version of tregex queries"""
     import os
     from process import tregex_engine
     # first, put the relevant trees into temp file
     if kwargs.get('outname'):
         to_open = 'tmp-%s.txt' % kwargs['outname']
     else:
         to_open = 'tmp.txt'
     to_write = '\n'.join([sent._parse_string.strip() for sent in sents \
                           if sent.parse_string is not None])
     to_write.encode('utf-8', errors = 'ignore')
     with open(to_open, "w") as fo:
         fo.write(to_write)
     q = list(search.values())[0]
     res = tregex_engine(query = q, 
                         options = ['-o', '-%s' % translated_option], 
                         corpus = to_open,
                         root = root,
                         preserve_case = True)
     if root:
         root.update()
     os.remove(to_open)
     if countmode:
         return(len(res))
     else:
         return res
示例#2
0
def make_nltk_text(directory,
                   collapse_dirs=True,
                   tagged=False,
                   lemmatise=False,
                   just_content_words=False):
    """
    Turn a lot of trees into an nltk style text"""
    import nltk
    import os
    from process import tregex_engine
    if type(directory) == str:
        dirs = [
            os.path.join(directory, d) for d in os.listdir(directory)
            if os.path.isdir(os.path.join(directory, d))
        ]
        if len(dirs) == 0:
            dirs = [directory]
    elif type(directory) == list:
        dirs = directory

    return_tuples = False
    if tagged:
        return_tuples = True

    if just_content_words:
        lemmatise = True

    query = r'__ < (/.?[A-Za-z0-9].?/ !< __)'
    if not return_tuples and not lemmatise:
        options = ['-o', '-t']
    else:
        options = ['-o']

    # filthy code.
    all_out = []

    for d in dirs:
        print("Flattening %s ... " % str(d))
        res = tregex_engine(corpus=d,
                            query=query,
                            options=options,
                            lemmatise=lemmatise,
                            just_content_words=just_content_words,
                            return_tuples=return_tuples)
        all_out.append(res)

    if collapse_dirs:
        tmp = []
        for res in all_out:
            for w in res:
                tmp.append(w)
        all_out = tmp
        textx = nltk.Text(all_out)
    else:
        textx = {}
        for name, text in zip(dirs, all_out):
            t = nltk.Text(all_out)
            textx[os.path.basename(name)] = t
    return textx
示例#3
0
    def slow_tregex(sents, **dummy_args):
        """do the speaker-specific version of tregex queries"""
        speakr = dummy_args.get('speaker', False)
        import os
        from process import tregex_engine
        # first, put the relevant trees into temp file
        if kwargs.get('outname'):
            to_open = 'tmp-%s.txt' % kwargs['outname']
        else:
            to_open = 'tmp.txt'
        to_write = '\n'.join([sent._parse_string.strip() for sent in sents \
                              if sent.parse_string is not None])
        to_write.encode('utf-8', errors = 'ignore')
        with open(to_open, "w") as fo:
            encd = to_write.encode('utf-8', errors = 'ignore') + '\n'
            fo.write(encd)
        q = list(search.values())[0]
        ops = ['-o', '-%s' % translated_option]
        concs = []
        res = tregex_engine(query = q, 
                            options = ops, 
                            corpus = to_open,
                            root = root,
                            preserve_case = True)
        if not no_conc:
            ops += ['-w', '-f']
            whole_res = tregex_engine(query = q, 
                            options = ops, 
                            corpus = to_open,
                            root = root,
                            preserve_case = True) 

            res = format_tregex(res)
            whole_res = format_tregex(whole_res, whole = True)
            concs = make_conc_lines_from_whole_mid(whole_res, res, speakr)

        if root:
            root.update()
        try:
            os.remove(to_open)
        except OSError:
            pass
        if countmode:
            return(len(res))
        else:
            return res, concs
示例#4
0
    def slow_tregex(sents, **dummy_args):
        """do the speaker-specific version of tregex queries"""
        speakr = dummy_args.get('speaker', False)
        import os
        from process import tregex_engine
        # first, put the relevant trees into temp file
        if kwargs.get('outname'):
            to_open = 'tmp-%s.txt' % kwargs['outname']
        else:
            to_open = 'tmp.txt'
        to_write = '\n'.join([sent._parse_string.strip() for sent in sents \
                              if sent.parse_string is not None])
        to_write.encode('utf-8', errors = 'ignore')
        with open(to_open, "w") as fo:
            encd = to_write.encode('utf-8', errors = 'ignore') + '\n'
            fo.write(encd)
        q = list(search.values())[0]
        ops = ['-o', '-%s' % translated_option]
        concs = []
        res = tregex_engine(query = q, 
                            options = ops, 
                            corpus = to_open,
                            root = root,
                            preserve_case = True)
        if not no_conc:
            ops += ['-w', '-f']
            whole_res = tregex_engine(query = q, 
                            options = ops, 
                            corpus = to_open,
                            root = root,
                            preserve_case = True) 

            res = format_tregex(res)
            whole_res = format_tregex(whole_res, whole = True)
            concs = make_conc_lines_from_whole_mid(whole_res, res, speakr)

        if root:
            root.update()
        try:
            os.remove(to_open)
        except OSError:
            pass
        if countmode:
            return(len(res))
        else:
            return res, concs
示例#5
0
def make_nltk_text(directory, 
                   collapse_dirs = True, 
                   tagged = False, 
                   lemmatise = False, 
                   just_content_words = False):
    """
    Turn a lot of trees into an nltk style text"""
    import nltk
    import os
    from process import tregex_engine
    if type(directory) == str:
        dirs = [os.path.join(directory, d) for d in os.listdir(directory) if os.path.isdir(os.path.join(directory, d))]
        if len(dirs) == 0:
            dirs = [directory]
    elif type(directory) == list:
        dirs = directory

    return_tuples = False
    if tagged:
        return_tuples = True

    if just_content_words:
        lemmatise = True

    query = r'__ < (/.?[A-Za-z0-9].?/ !< __)'
    if not return_tuples and not lemmatise:
        options = ['-o', '-t']
    else:
        options = ['-o']

    # filthy code.
    all_out = []

    for d in dirs:
        print("Flattening %s ... " % str(d))
        res = tregex_engine(corpus = d, 
                            query = query, 
                            options = options,
                            lemmatise = lemmatise,
                            just_content_words = just_content_words,
                            return_tuples = return_tuples)
        all_out.append(res)

    if collapse_dirs:
        tmp = []
        for res in all_out:
            for w in res:
                tmp.append(w)
        all_out = tmp
        textx = nltk.Text(all_out)
    else:
        textx = {}
        for name, text in zip(dirs, all_out):
            t = nltk.Text(all_out)
            textx[os.path.basename(name)] = t
    return textx
示例#6
0
def datareader(data, plaintext = False, **kwargs):
    import corpkit
    """
    Returns a string of plain text from a number of kinds of data.

    The kinds of data currently accepted are:

    path to corpus : all trees are flattened
    path to subcorpus : all trees are flattened
    conc() output (list of concordance lines)
    csv file generated with conc()
    a string of text
    """
    import os
    import pandas
    from process import tregex_engine
    from tests import check_dit
    try:
        get_ipython().getoutput()
    except TypeError:
        have_ipython = True
    except NameError:
        import subprocess
        have_ipython = False

    tregex_engine_used = False
    
    # if unicode, make it a string
    if type(data) == str:
        if not os.path.isdir(data):
            if not os.path.isfile(data):
                return good
    if type(data) == str:
        # if it's a file, read it
        if os.path.isfile(data):
            good = open(data).read()
        # if it's a dir, flatten all trees
        elif os.path.isdir(data):
            # get all sentences newline separated
            query = r'__ !< __'
            options = ['-o', '-t']

            # if lemmatise, we get each word on a newline
            if kwargs.get('lemmatise'):
                query = r'__ <# (__ !< __)'
                options = ['-o']
 
            # check for trees ...
            #while plaintext is False:
                #for f in first_twenty:
                    #plaintext = tregex_engine(corpus = f, check_for_trees = True)
            
            if not plaintext:
                tregex_engine_used = True
                results = tregex_engine(corpus = data,
                                              options = options,
                                              query = query, 
                                              **kwargs)
            else:
                results = []
                fs = [os.path.join(data, f) for f in os.listdir(data)]
                # do recursive if need
                if any(os.path.isdir(f) for f in fs):
                    recursive_files = []
                    for dirname, dirnames, filenames in os.walk(data):
                        for filename in filenames:
                            recursive_files.append(os.path.join(dirname, filename))
                    fs = recursive_files
                
                import nltk
                sent_tokenizer=nltk.data.load('tokenizers/punkt/english.pickle')
                for f in fs:
                    raw = str(open(f).read(), 'utf-8', errors = 'ignore')
                    sents = sent_tokenizer.tokenize(raw)
                    tokenized_sents = [nltk.word_tokenize(i) for i in sents]
                    for sent in tokenized_sents:
                        for w in sent:
                            results.append(w.lower()) 

            return results

            #good = '\n'.join(results)
        # if a string of text, 
        else:
            good = data
    # if conc results, turn into string...
    elif type(data) == pandas.core.frame.DataFrame:
        # if conc lines:
        try:
            if list(data.columns) == ['l', 'm', 'r']:
                conc_lines = True
            else:
                conc_lines = False
        except:
            conc_lines = False
        if conc_lines:
            # may not be unicode!?
            good = [' '.join(list(data.ix[l])) for l in list(data.index)]

    else:
        good = data

    # make unicode
    if not tregex_engine_used:
        try:
            good = str(good, 'utf-8', errors = 'ignore')
        except TypeError:
            pass

    return good
示例#7
0
def datareader(data, plaintext=False, **kwargs):
    import corpkit
    """
    Returns a string of plain text from a number of kinds of data.

    The kinds of data currently accepted are:

    path to corpus : all trees are flattened
    path to subcorpus : all trees are flattened
    conc() output (list of concordance lines)
    csv file generated with conc()
    a string of text
    """
    import os
    import pandas
    from process import tregex_engine
    from tests import check_dit
    try:
        get_ipython().getoutput()
    except TypeError:
        have_ipython = True
    except NameError:
        import subprocess
        have_ipython = False

    tregex_engine_used = False

    # if unicode, make it a string
    if type(data) == str:
        if not os.path.isdir(data):
            if not os.path.isfile(data):
                return good
    if type(data) == str:
        # if it's a file, read it
        if os.path.isfile(data):
            good = open(data).read()
        # if it's a dir, flatten all trees
        elif os.path.isdir(data):
            # get all sentences newline separated
            query = r'__ !< __'
            options = ['-o', '-t']

            # if lemmatise, we get each word on a newline
            if kwargs.get('lemmatise'):
                query = r'__ <# (__ !< __)'
                options = ['-o']

            # check for trees ...
            #while plaintext is False:
            #for f in first_twenty:
            #plaintext = tregex_engine(corpus = f, check_for_trees = True)

            if not plaintext:
                tregex_engine_used = True
                results = tregex_engine(corpus=data,
                                        options=options,
                                        query=query,
                                        **kwargs)
            else:
                results = []
                fs = [os.path.join(data, f) for f in os.listdir(data)]
                # do recursive if need
                if any(os.path.isdir(f) for f in fs):
                    recursive_files = []
                    for dirname, dirnames, filenames in os.walk(data):
                        for filename in filenames:
                            recursive_files.append(
                                os.path.join(dirname, filename))
                    fs = recursive_files

                import nltk
                sent_tokenizer = nltk.data.load(
                    'tokenizers/punkt/english.pickle')
                for f in fs:
                    raw = str(open(f).read(), 'utf-8', errors='ignore')
                    sents = sent_tokenizer.tokenize(raw)
                    tokenized_sents = [nltk.word_tokenize(i) for i in sents]
                    for sent in tokenized_sents:
                        for w in sent:
                            results.append(w.lower())

            return results

            #good = '\n'.join(results)
        # if a string of text,
        else:
            good = data
    # if conc results, turn into string...
    elif type(data) == pandas.core.frame.DataFrame:
        # if conc lines:
        try:
            if list(data.columns) == ['l', 'm', 'r']:
                conc_lines = True
            else:
                conc_lines = False
        except:
            conc_lines = False
        if conc_lines:
            # may not be unicode!?
            good = [' '.join(list(data.ix[l])) for l in list(data.index)]

    else:
        good = data

    # make unicode
    if not tregex_engine_used:
        try:
            good = str(good, 'utf-8', errors='ignore')
        except TypeError:
            pass

    return good
示例#8
0
def interrogator(corpus, 
            search, 
            query = 'any', 
            show = 'w',
            exclude = False,
            excludemode = 'any',
            searchmode = 'all',
            dep_type = 'collapsed-ccprocessed-dependencies',
            case_sensitive = False,
            quicksave = False,
            just_speakers = False,
            preserve_case = False,
            lemmatag = False,
            files_as_subcorpora = False,
            only_unique = False,
            random = False,
            only_format_match = False,
            multiprocess = False,
            spelling = False,
            regex_nonword_filter = r'[A-Za-z0-9:_]',
            gramsize = 2,
            split_contractions = False,
            do_concordancing = False,
            maxconc = 9999,
            **kwargs):
    """interrogate corpus, corpora, subcorpus and file objects

    see corpkit.interrogation.interrogate() for docstring"""

    only_conc = False
    no_conc = False
    if do_concordancing is False:
        no_conc = True
    if type(do_concordancing) == str and do_concordancing.lower() == 'only':
        only_conc = True
        no_conc = False

    # iteratively count conc lines
    numconc = 0

    # store kwargs
    locs = locals()
    
    if kwargs:
        for k, v in kwargs.items():
            locs[k] = v
        locs.pop('kwargs', None)

    import corpkit
    from interrogation import Interrogation
    from process import tregex_engine
    import pandas as pd
    from pandas import DataFrame, Series
    from collections import Counter
    from other import as_regex
    from process import get_deps
    from time import localtime, strftime
    from textprogressbar import TextProgressBar
    from process import animator
    from dictionaries.word_transforms import wordlist, taglemma
    import corenlp_xml
    import codecs
    import signal

    original_sigint = signal.getsignal(signal.SIGINT)

    if kwargs.get('paralleling', None) is None:
        original_sigint = signal.getsignal(signal.SIGINT)
        
        def signal_handler(signal, frame):
            """pause on ctrl+c, rather than just stop loop"""   
            import signal
            import sys
            from time import localtime, strftime
            signal.signal(signal.SIGINT, original_sigint)
            thetime = strftime("%H:%M:%S", localtime())
            try:
                sel = raw_input('\n\n%s: Paused. Press any key to resume, or ctrl+c to quit.\n' % thetime)
            except NameError:
                sel = input('\n\n%s: Paused. Press any key to resume, or ctrl+c to quit.\n' % thetime)
            time = strftime("%H:%M:%S", localtime())
            print('%s: Interrogation resumed.\n' % time)
            signal.signal(signal.SIGINT, signal_handler)

        signal.signal(signal.SIGINT, signal_handler)

    # find out if using gui
    root = kwargs.get('root')
    note = kwargs.get('note')

    # convert path to corpus object
    if type(corpus) == str:
        from corpus import Corpus
        corpus = Corpus(corpus)

    # figure out how the user has entered the query and normalise
    from process import searchfixer
    search, search_iterable = searchfixer(search, query)
    
    # for better printing of query, esp during multiprocess
    # can remove if multiprocess printing improved
    if len(list(search.keys())) == 1:
        query = list(search.values())[0]

    if 'l' in show and search.get('t'):
        from nltk.stem.wordnet import WordNetLemmatizer
        lmtzr=WordNetLemmatizer()

    if type(show) == str:
        show = [show]

    def is_multiquery(corpus, search, query, just_speakers):
        """determine if multiprocessing is needed
        do some retyping if need be as well"""
        im = False
        from collections import OrderedDict
        if hasattr(corpus, '__iter__'):
            im = True
        # so we can do search = 't', query = ['NP', 'VP']:
        if type(query) == list:
            if query != list(search.values())[0] or len(list(search.keys())) > 1:
                query = {c.title(): c for c in query}
        if type(query) == dict or type(query) == OrderedDict:
            im = True
        if just_speakers:
            if just_speakers == 'each':
                im = True
                just_speakers = ['each']
            if just_speakers == ['each']:
                im = True
            if type(just_speakers) == str:
                im = False
                just_speakers = [just_speakers]
            if type(just_speakers) == list:
                if len(just_speakers) > 1:
                    im = True
        if type(search) == dict:
            if all(type(i) == dict for i in list(search.values())):
                im = True
        return im, corpus, search, query, just_speakers

    def slow_tregex(sents, **dummy_args):
        """do the speaker-specific version of tregex queries"""
        speakr = dummy_args.get('speaker', False)
        import os
        from process import tregex_engine
        # first, put the relevant trees into temp file
        if kwargs.get('outname'):
            to_open = 'tmp-%s.txt' % kwargs['outname']
        else:
            to_open = 'tmp.txt'
        to_write = '\n'.join([sent._parse_string.strip() for sent in sents \
                              if sent.parse_string is not None])
        to_write.encode('utf-8', errors = 'ignore')
        with open(to_open, "w") as fo:
            encd = to_write.encode('utf-8', errors = 'ignore') + '\n'
            fo.write(encd)
        q = list(search.values())[0]
        ops = ['-o', '-%s' % translated_option]
        concs = []
        res = tregex_engine(query = q, 
                            options = ops, 
                            corpus = to_open,
                            root = root,
                            preserve_case = True)
        if not no_conc:
            ops += ['-w', '-f']
            whole_res = tregex_engine(query = q, 
                            options = ops, 
                            corpus = to_open,
                            root = root,
                            preserve_case = True) 

            res = format_tregex(res)
            whole_res = format_tregex(whole_res, whole = True)
            concs = make_conc_lines_from_whole_mid(whole_res, res, speakr)

        if root:
            root.update()
        try:
            os.remove(to_open)
        except OSError:
            pass
        if countmode:
            return(len(res))
        else:
            return res, concs

    def get_stats(sents, **dummy_args):
        """get a bunch of frequencies on interpersonal phenomena"""
        import os
        import re
        from collections import Counter
        statsmode_results = Counter()  
        # first, put the relevant trees into temp file
        if kwargs.get('outname'):
            to_open = 'tmp-%s.txt' % kwargs['outname']
        else:
            to_open = 'tmp.txt'
        with open(to_open, "w") as fo:
            for sent in sents:
                statsmode_results['Sentences'] += 1
                sts = sent.parse_string.rstrip()
                encd = sts.encode('utf-8', errors = 'ignore') + '\n'
                fo.write(encd)
                deps = get_deps(sent, dep_type)
                numpass = len([x for x in deps.links if x.type.endswith('pass')])
                statsmode_results['Passives'] += numpass
                statsmode_results['Tokens'] += len(sent.tokens)
                words = [w.word for w in sent.tokens if w.word.isalnum()]
                statsmode_results['Words'] += len(words)
                statsmode_results['Characters'] += len(''.join(words))

        # count moods via trees          (/\?/ !< __)
        from dictionaries.process_types import processes
        from other import as_regex
        tregex_qs = {'Imperative': r'ROOT < (/(S|SBAR)/ < (VP !< VBD !< VBG !$ NP !$ SBAR < NP !$-- S !$-- VP !$ VP)) !<< (/\?/ !< __) !<<- /-R.B-/ !<<, /(?i)^(-l.b-|hi|hey|hello|oh|wow|thank|thankyou|thanks|welcome)$/',
                     'Open interrogative': r'ROOT < SBARQ <<- (/\?/ !< __)', 
                     'Closed interrogative': r'ROOT ( < (SQ < (NP $+ VP)) << (/\?/ !< __) | < (/(S|SBAR)/ < (VP $+ NP)) <<- (/\?/ !< __))',
                     'Unmodalised declarative': r'ROOT < (S < (/(NP|SBAR|VP)/ $+ (VP !< MD)))',
                     'Modalised declarative': r'ROOT < (S < (/(NP|SBAR|VP)/ $+ (VP < MD)))',
                     'Open class words': r'/^(NN|JJ|VB|RB)/ < __',
                     'Closed class words': r'__ !< __ !> /^(NN|JJ|VB|RB)/',
                     'Clauses': r'/^S/ < __',
                     'Interrogative': r'ROOT << (/\?/ !< __)',
                     'Mental processes': r'VP > /^(S|ROOT)/ <+(VP) (VP <<# /%s/)' % as_regex(processes.mental, boundaries = 'w'),
                     'Verbal processes': r'VP > /^(S|ROOT)/ <+(VP) (VP <<# /%s/)' % as_regex(processes.verbal, boundaries = 'w'),
                     'Relational processes': r'VP > /^(S|ROOT)/ <+(VP) (VP <<# /%s/)' % as_regex(processes.relational, boundaries = 'w')
                     }

        for name, q in sorted(tregex_qs.items()):
            res = tregex_engine(query = q, 
                  options = ['-o', '-C'], 
                  corpus = to_open,  
                  root = root)
            statsmode_results[name] += int(res)
            global numdone
            numdone += 1
            if root:
                root.update()
            else:
                tot_string = str(numdone + 1) + '/' + str(total_files)
                if kwargs.get('outname'):
                    tot_string = '%s: %s' % (kwargs['outname'], tot_string)
                animator(p, numdone, tot_string, **par_args)
            if kwargs.get('note', False):
                kwargs['note'].progvar.set((numdone * 100.0 / total_files / denom) + startnum)
        os.remove(to_open)
        return statsmode_results, []

    def make_conc_lines_from_whole_mid(wholes, middle_column_result, 
                                       speakr = False):
        import re, os
        if speakr is False:
            speakr = ''
        conc_lines = []
        # remove duplicates from results
        unique_wholes = []
        unique_middle_column_result = []
        duplicates = []
        for index, ((f, whole), mid) in enumerate(zip(wholes, middle_column_result)):
            if '-join-'.join([f, whole, mid]) not in duplicates:
                duplicates.append('-join-'.join([f, whole, mid]))
                unique_wholes.append([f, whole])
                unique_middle_column_result.append(mid)

        # split into start, middle and end, dealing with multiple occurrences
        for index, ((f, whole), mid) in enumerate(zip(unique_wholes, unique_middle_column_result)):
            reg = re.compile(r'([^a-zA-Z0-9-]|^)(' + re.escape(mid) + r')([^a-zA-Z0-9-]|$)', re.IGNORECASE | re.UNICODE)
            offsets = [(m.start(), m.end()) for m in re.finditer(reg,whole)]
            for offstart, offend in offsets:              
                start, middle, end = whole[0:offstart].strip(), whole[offstart:offend].strip(), whole[offend:].strip()
                conc_lines.append([os.path.basename(f), speakr, start, middle, end])
        return conc_lines

    def uniquify(conc_lines):
        from collections import OrderedDict
        unique_lines = []
        checking = []
        for index, (f, speakr, start, middle, end) in enumerate(conc_lines):
            joined = ' '.join([speakr, start, 'MIDDLEHERE:', middle, ':MIDDLEHERE', end])
            if joined not in checking:
                unique_lines.append(conc_lines[index])
            checking.append(joined)
        return unique_lines

    def lemmatiser(list_of_words, tag):
        """take a list of unicode words and a tag and return a lemmatised list."""
        output = []
        for word in list_of_words:
            if translated_option.startswith('u'):
                if word.lower() in list(taglemma.keys()):
                    word = taglemma[word.lower()]
                else:
                    if word == 'x':
                        word = 'Other'
            # only use wordnet lemmatiser when appropriate
            else:
                if word in wordlist:
                    word = wordlist[word]
                word = lmtzr.lemmatize(word, tag)
            output.append(word)
        return output

    def gettag(query, lemmatag = False):
        """
        Find tag for WordNet lemmatisation
        """
        import re

        tagdict = {'N': 'n',
                   'A': 'a',
                   'V': 'v',
                   'A': 'r',
                   'None': False,
                   '': False,
                   'Off': False}

        if lemmatag is False:
            tag = 'n' # same default as wordnet
            # attempt to find tag from tregex query
            tagfinder = re.compile(r'^[^A-Za-z]*([A-Za-z]*)')
            tagchecker = re.compile(r'^[A-Z]{1,4}$')
            qr = query.replace(r'\w', '').replace(r'\s', '').replace(r'\b', '')
            treebank_tag = re.findall(tagfinder, qr)
            if re.match(tagchecker, treebank_tag[0]):
                tag = tagdict.get(treebank_tag[0], 'n')
        elif lemmatag:
            tag = lemmatag
        return tag

    def format_tregex(results, whole = False):
        """format tregex by show list"""
        if countmode:
            return results
        import re
        done = []
        
        if whole:
            fnames = [x for x, y in results]
            results = [y for x, y in results]

        if 'l' in show or 'pl' in show:
            lemmata = lemmatiser(results, gettag(search.get('t'), lemmatag))
        else:
            lemmata = [None for i in results]
        for word, lemma in zip(results, lemmata):
            bits = []
            if exclude and exclude.get('w'):
                if len(list(exclude.keys())) == 1 or excludemode == 'any':
                    if re.search(exclude.get('w'), word):
                        continue
                if len(list(exclude.keys())) == 1 or excludemode == 'any':
                    if re.search(exclude.get('l'), lemma):
                        continue
                if len(list(exclude.keys())) == 1 or excludemode == 'any':
                    if re.search(exclude.get('p'), word):
                        continue
                if len(list(exclude.keys())) == 1 or excludemode == 'any':
                    if re.search(exclude.get('pl'), lemma):
                        continue
            if exclude and excludemode == 'all':
                num_to_cause_exclude = len(list(exclude.keys()))
                current_num = 0
                if exclude.get('w'):
                    if re.search(exclude.get('w'), word):
                        current_num += 1
                if exclude.get('l'):
                    if re.search(exclude.get('l'), lemma):
                        current_num += 1
                if exclude.get('p'):
                    if re.search(exclude.get('p'), word):
                        current_num += 1
                if exclude.get('pl'):
                    if re.search(exclude.get('pl'), lemma):
                        current_num += 1   
                if current_num == num_to_cause_exclude:
                    continue                 

            for i in show:
                if i == 't':
                    bits.append(word)
                if i == 'l':
                    bits.append(lemma)
                elif i == 'w':
                    bits.append(word)
                elif i == 'p':
                    bits.append(word)
                elif i == 'pl':
                    bits.append(lemma)
            joined = '/'.join(bits)
            done.append(joined)

        if whole:
            done = zip(fnames, done)

        return done

    def tok_by_list(pattern, list_of_toks, concordancing = False, **kwargs):
        """search for regex in plaintext corpora"""
        import re
        if type(pattern) == str:
            pattern = [pattern]
        if not case_sensitive:
            pattern = [p.lower() for p in pattern]
        if not concordancing:
            if case_sensitive:
                matches = [m for m in list_of_toks if m in pattern]
            else:
                matches = [m for m in list_of_toks if m.lower() in pattern]
        else:
            matches = []
            for index, token in enumerate(list_of_toks):
                if token in pattern:
                    match = [' '.join([t for t in unsplitter(list_of_toks[:index])])[-140:]]
                    match.append(token)
                    match.append(' '.join([t for t in unsplitter(list_of_toks[index + 1:])])[:140])
                    matches.append(match)
        if countmode:
            return(len(matches))
        else:
            return matches

    def unsplitter(lst):
        """unsplit contractions and apostophes from tokenised text"""
        if split_contractions:
            return lst
        unsplit = []
        for index, t in enumerate(lst):
            if index == 0 or index == len(lst) - 1:
                unsplit.append(t)
                continue
            if "'" in t and not t.endswith("'"):
                rejoined = ''.join([lst[index - 1], t])
                unsplit.append(rejoined)
            else:
                if not "'" in lst[index + 1]:
                    unsplit.append(t)
        return unsplit

    def tok_ngrams(pattern, list_of_toks, concordancing = False, split_contractions = True):
        from collections import Counter
        import re
        ngrams = Counter()
        result = []
        # if it's not a compiled regex
        list_of_toks = [x for x in list_of_toks if re.search(regex_nonword_filter, x)]
        if pattern.lower() == 'any':
            pattern = r'.*'

        if not split_contractions:
            list_of_toks = unsplitter(list_of_toks)
            
            #list_of_toks = [x for x in list_of_toks if "'" not in x]
        for index, w in enumerate(list_of_toks):
            try:
                the_gram = [list_of_toks[index+x] for x in range(gramsize)]
                if not any(re.search(pattern, x) for x in the_gram):
                    continue
                ngrams[' '.join(the_gram)] += 1
            except IndexError:
                pass

        # turn counter into list of results
        for k, v in list(ngrams.items()):
            if v > 1:
                for i in range(v):
                    result.append(k)
        if countmode:
            return(len(result))
        else:
            return result

    def compiler(pattern):
        """compile regex or fail gracefully"""
        import re
        try:
            if case_sensitive:
                comped = re.compile(pattern)
            else:
                comped = re.compile(pattern, re.IGNORECASE)
            return comped
        except:
            import traceback
            import sys
            from time import localtime, strftime
            exc_type, exc_value, exc_traceback = sys.exc_info()
            lst = traceback.format_exception(exc_type, exc_value,
                          exc_traceback)
            error_message = lst[-1]
            thetime = strftime("%H:%M:%S", localtime())
            print('%s: Query %s' % (thetime, error_message))
            if root:
                return 'Bad query'
            else:
                raise ValueError('%s: Query %s' % (thetime, error_message))

    def tok_by_reg(pattern, list_of_toks, concordancing = False, **kwargs):
        """search for regex in plaintext corpora"""
        import re
        comped = compiler(pattern)
        if comped == 'Bad query':
            return 'Bad query'
        if not concordancing:
            matches = [m for m in list_of_toks if re.search(comped, m)]
        else:
            matches = []
            for index, token in enumerate(list_of_toks):
                if re.search(comped, token):
                    match = [' '.join([t for t in unsplitter(list_of_toks[:index])])[-140:]]
                    match.append(re.search(comped, token).group(0))
                    match.append(' '.join([t for t in unsplitter(list_of_toks[index + 1:])])[:140])
                    matches.append(match)
        if countmode:
            return(len(matches))
        else:
            return matches

    def plaintext_regex_search(pattern, plaintext_data, concordancing = False, **kwargs):
        """search for regex in plaintext corpora

        it searches over lines, so the user needs to be careful.
        """
        import re
        if concordancing:
            pattern = r'(.{,140})\b(' + pattern + r')\b(.{,140})'
        compiled_pattern = compiler(pattern)
        if compiled_pattern == 'Bad query':
            return 'Bad query'
        matches = re.findall(compiled_pattern, plaintext_data)
        if concordancing:
            matches = [list(m) for m in matches]
        if not concordancing:
            for index, i in enumerate(matches):
                if type(i) == tuple:
                    matches[index] = i[0]
        if countmode:
            return(len(matches))
        else:
            return matches

    def correct_spelling(a_string):
        if not spelling:
            return a_string
        from dictionaries.word_transforms import usa_convert
        if spelling.lower() == 'uk':
            usa_convert = {v: k for k, v in list(usa_convert.items())}
        spell_out = []
        bits = a_string.split('/')
        for index, i in enumerate(bits):
            converted = usa_convert.get(i.lower(), i)
            if i.islower() or preserve_case is False:
                converted = converted.lower()
            elif i.isupper() and preserve_case:
                converted = converted.upper()
            elif i.istitle() and preserve_case:
                converted = converted.title()
            bits[index] = converted
        r = '/'.join(bits)
        return r

    def plaintext_simple_search(pattern, plaintext_data, concordancing = False, **kwargs):
        """search for tokens in plaintext corpora"""
        import re
        result = []
        if type(pattern) == str:
            pattern = [pattern]
        for p in pattern:
            if concordancing:
                pat = r'(.{0,140})\b(' + re.escape(p) + r')\b(.{0,140})'
            pat = compiler(pat)
            if pat == 'Bad query':
                return 'Bad query'
            matches = re.findall(pat, plaintext_data)
            if concordancing:
                matches = [list(m) for m in matches]
                for i in matches:
                    result.append(i)
            else:   
                for m in range(len(matches)):
                    result.append(p)
        return result

    # do multiprocessing if need be
    im, corpus, search, query, just_speakers = is_multiquery(corpus, search, query, just_speakers)
    
    locs['search'] = search
    locs['query'] = query
    locs['just_speakers'] = just_speakers
    locs['corpus'] = corpus
    locs['multiprocess'] = multiprocess

    if im:
        signal.signal(signal.SIGINT, original_sigint)
        from multiprocess import pmultiquery
        return pmultiquery(**locs)

    datatype = corpus.datatype
    singlefile = corpus.singlefile

    # store all results in here
    results = {}
    count_results = {}
    conc_results = {}
    # check if just counting
    countmode = 'c' in show
    if countmode:
        no_conc = True
        only_conc = False
    # where we are at in interrogation
    current_iter = 0

    # multiprocessing progress bar
    denom = kwargs.get('denominator', 1)
    startnum = kwargs.get('startnum', 0)

    ############################################
    # Determine the search function to be used #
    ############################################
    
    # simple tregex is tregex over whole dirs
    simple_tregex_mode = False
    statsmode = False
    if not just_speakers and 't' in list(search.keys()):
        simple_tregex_mode = True
    else:
        if corpus.datatype == 'plaintext':
            if search.get('n'):
                raise NotImplementedError('Use a tokenised corpus for n-gramming.')
                #searcher = plaintext_ngram
                optiontext = 'n-grams via plaintext'
            if search.get('w'):
                if kwargs.get('regex', True):
                    searcher = plaintext_regex_search
                else:
                    searcher = plaintext_simple_search
                optiontext = 'Searching plaintext'

        elif corpus.datatype == 'tokens':
            if search.get('n'):
                searcher = tok_ngrams
                optiontext = 'n-grams via tokens'
            elif search.get('w'):
                if kwargs.get('regex', True):
                    searcher = tok_by_reg
                else:
                    searcher = tok_by_list
                if type(search.get('w')) == list:
                    searcher = tok_by_list
                optiontext = 'Searching tokens'
        only_parse = ['r', 'd', 'g', 'dl', 'gl', 'df', 'gf', 'dp', 'gp', 'f', 'd2', 'd2f', 'd2p', 'd2l']
        if corpus.datatype != 'parse' and any(i in only_parse for i in list(search.keys())):
            raise ValueError('Need parsed corpus to search with "%s" option(s).' % ', '.join([i for i in list(search.keys()) if i in only_parse]))

        elif corpus.datatype == 'parse':
            if search.get('t'):
                searcher = slow_tregex
            elif search.get('s'):
                searcher = get_stats
                statsmode = True
                optiontext = 'General statistics'
                global numdone
                numdone = 0
                no_conc = True
                only_conc = False
                do_concordancing = False
            else:
                from depsearch import dep_searcher
                searcher = dep_searcher
                optiontext = 'Dependency querying'

    ############################################
    #      Set some Tregex-related values      #
    ############################################

    if search.get('t'):
        translated_option = 't'
        query = search.get('t')

        # check the query
        q = tregex_engine(corpus = False, query = search.get('t'), 
                          options = ['-t'], check_query = True, root = root)
        if query is False:
            if root:
                return 'Bad query'
            else:
                return

        optiontext = 'Searching parse trees'
        if 'p' in show or 'pl' in show:
            translated_option = 'u'
            if type(search['t']) == list:
                search['t'] = r'__ < (/%s/ !< __)' % as_regex(search['t'], boundaries = 'line', 
                                            case_sensitive = case_sensitive)
            if search['t'] == 'any':
                search['t'] = r'__ < (/.?[A-Za-z0-9].?/ !< __)'
        elif 't' in show:
            translated_option = 'o'
            if type(search['t']) == list:
                search['t'] = r'__ < (/%s/ !< __)' % as_regex(search['t'], boundaries = 'line', 
                                            case_sensitive = case_sensitive)
            if search['t'] == 'any':
                search['t'] = r'__ < (/.?[A-Za-z0-9].?/ !< __)'
        elif 'w' in show:
            translated_option = 't'
            if type(search['t']) == list:
                search['t'] = r'/%s/ !< __' % as_regex(search['t'], boundaries = 'line', 
                                            case_sensitive = case_sensitive)
            if search['t'] == 'any':
                search['t'] = r'/.?[A-Za-z0-9].?/ !< __'
        elif 'c' in show:
            only_count = True
            translated_option = 'C'
            if type(search['t']) == list:
                search['t'] = r'/%s/ !< __'  % as_regex(search['t'], boundaries = 'line', 
                                            case_sensitive = case_sensitive)
            if search['t'] == 'any':
                search['t'] = r'/.?[A-Za-z0-9].?/ !< __'
        elif 'l' in show:
            translated_option = 't'
            if type(search['t']) == list:
                search['t'] = r'/%s/ !< __' % as_regex(search['t'], boundaries = 'line', 
                                            case_sensitive = case_sensitive)
            if search['t'] == 'any':
                search['t'] = r'/.?[A-Za-z0-9].?/ !< __'

        query = search['t']

    ############################################
    # Make iterable for corpus/subcorpus/file  #
    ############################################

    if corpus.singlefile:
        to_iterate_over = {(corpus.name, corpus.path): [corpus]}
    elif not corpus.subcorpora:
        to_iterate_over = {(corpus.name, corpus.path): corpus.files}
    else:
        to_iterate_over = {}
        for subcorpus in corpus.subcorpora:
            to_iterate_over[(subcorpus.name, subcorpus.path)] = subcorpus.files
        #for k, v in sorted(corpus.structure.items(), key=lambda obj: obj[0].name):
        #    to_iterate_over[(k.name, k.path)] = v
    if files_as_subcorpora:
        to_iterate_over = {}
        for f in corpus.files:
            to_iterate_over[(f.name, f.path)] = [f]

    ############################################
    #           Print welcome message          #
    ############################################

    if no_conc:
        message = 'Interrogating'
    else:
        message = 'Interrogating and concordancing'
    if kwargs.get('printstatus', True):
        thetime = strftime("%H:%M:%S", localtime())

        sformat = '\n                 '.join(['%s: %s' % (k.rjust(3), v) for k, v in list(search.items())])
        if search == {'s': r'.*'}:
            sformat = 'features'
        welcome = '\n%s: %s %s ...\n          %s\n          Query: %s\n          %s corpus ... \n' % \
                  (thetime, message, corpus.name, optiontext, sformat, message)
        print(welcome)

    ############################################
    #           Make progress bar              #
    ############################################

    if simple_tregex_mode:
        total_files = len(list(to_iterate_over.keys()))
    else:
        if search.get('s'):
            total_files = sum([len(x) for x in list(to_iterate_over.values())]) * 12
        else:
            total_files = sum([len(x) for x in list(to_iterate_over.values())])

    par_args = {'printstatus': kwargs.get('printstatus', True),
                'root': root, 
                'note': note,
                'length': total_files,
                'startnum': kwargs.get('startnum'),
                'denom': kwargs.get('denominator', 1)}

    term = None
    if kwargs.get('paralleling', None) is not None:
        from blessings import Terminal
        term = Terminal()
        par_args['terminal'] = term
        par_args['linenum'] = kwargs.get('paralleling')

    outn = kwargs.get('outname', '')
    if outn:
        outn = outn + ': '
    tstr = '%s%d/%d' % (outn, current_iter, total_files)
    p = animator(None, None, init = True, tot_string = tstr, **par_args)
    tstr = '%s%d/%d' % (outn, current_iter + 1, total_files)
    animator(p, current_iter, tstr, **par_args)

    ############################################
    # Iterate over data, doing interrogations  #
    ############################################

    for (subcorpus_name, subcorpus_path), files in sorted(to_iterate_over.items()):

        conc_results[subcorpus_name] = []
        count_results[subcorpus_name] = []
        results[subcorpus_name] = Counter()
        
        # tregex over subcorpora, not files
        if simple_tregex_mode:

            op = ['-o', '-' + translated_option]                
            result = tregex_engine(query = search['t'], options = op, 
                                   corpus = subcorpus_path, root = root, preserve_case = preserve_case)

            if not countmode:
                result = format_tregex(result)

            if not no_conc:
                op += ['-w', '-f']
                whole_result = tregex_engine(query = search['t'], options = op, 
                                   corpus = subcorpus_path, root = root, preserve_case = preserve_case)
                
                if not only_format_match:
                    whole_result = format_tregex(whole_result, whole = True)

                conc_result = make_conc_lines_from_whole_mid(whole_result, result, speakr = False)

            if countmode:
                count_results[subcorpus_name] += [result]            
            else:
                result = Counter(result)
                results[subcorpus_name] += result
                if not no_conc:
                    for lin in conc_result:
                        if numconc < maxconc or not maxconc:
                            conc_results[subcorpus_name].append(lin)
                        numconc += 1

            current_iter += 1
            if kwargs.get('paralleling', None) is not None:
                tstr = '%s%d/%d' % (outn, current_iter + 1, total_files)
            else:
                tstr = '%s%d/%d' % (outn, current_iter + 1, total_files)

            animator(p, current_iter, tstr, **par_args)

        # dependencies, plaintext, tokens or slow_tregex
        else:
            for f in files:
                slow_treg_speaker_guess = kwargs.get('outname', False)
                if corpus.datatype == 'parse':
                    with open(f.path, 'r') as data:
                        data = data.read()
                        from corenlp_xml.document import Document
                        try:
                            corenlp_xml = Document(data)
                        except:
                            print('Could not read file: %s' % f.path)
                            continue
                        if just_speakers:  
                            sents = [s for s in corenlp_xml.sentences if s.speakername in just_speakers]
                            if len(just_speakers) == 1:
                                slow_treg_speaker_guess = just_speakers[0]
                            if not sents:
                                continue
                        else:
                            sents = corenlp_xml.sentences

                        res, conc_res = searcher(sents, search = search, show = show,
                            dep_type = dep_type,
                            exclude = exclude,
                            excludemode = excludemode,
                            searchmode = searchmode,
                            lemmatise = False,
                            case_sensitive = case_sensitive,
                            do_concordancing = do_concordancing,
                            only_format_match = only_format_match,
                            speaker = slow_treg_speaker_guess)
                        
                        if res == 'Bad query':
                            return 'Bad query'

                elif corpus.datatype == 'tokens':
                    import pickle
                    with codecs.open(f.path, "rb") as fo:
                        data = pickle.load(fo)
                    if not only_conc:
                        res = searcher(list(search.values())[0], data, split_contractions = split_contractions, 
                        concordancing = False)
                    if not no_conc:
                        conc_res = searcher(list(search.values())[0], data, split_contractions = split_contractions, 
                        concordancing = True)
                    if not no_conc:
                        for index, line in enumerate(conc_res):
                            line.insert(0, '')

                elif corpus.datatype == 'plaintext':
                    with codecs.open(f.path, 'rb', encoding = 'utf-8') as data:
                        data = data.read()
                        if not only_conc:
                            res = searcher(list(search.values())[0], data, 
                            concordancing = False)
                        if not no_conc:
                            conc_res = searcher(list(search.values())[0], data, 
                            concordancing = True)
                        if not no_conc:
                            for index, line in enumerate(conc_res):
                                line.insert(0, '')

                if countmode:
                    count_results[subcorpus_name] += [res]
                else:
                    # add filename and do lowercasing for conc
                    if not no_conc:
                        for index, line in enumerate(conc_res):
                            if searcher != slow_tregex:
                                line.insert(0, f.name)
                            else:
                                line[0] = f.name
                            if not preserve_case:
                                line[3:] = [x.lower() for x in line[3:]]
                            if spelling:
                                line = [correct_spelling(b) for b in line]
                            if numconc < maxconc or not maxconc:
                                conc_results[subcorpus_name].append(line)
                                numconc += 1

                    # do lowercasing and spelling
                    if not only_conc:
                        if not preserve_case:
                            if not statsmode:
                                res = [i.lower() for i in res]
                        if spelling:
                            if not statsmode:
                                res = [correct_spelling(r) for r in res]
                        #if not statsmode:
                        results[subcorpus_name] += Counter(res)
                        #else:
                        #results[subcorpus_name] += res

                if not statsmode:
                    current_iter += 1
                    if kwargs.get('paralleling', None) is not None:
                        tstr = '%s%d/%d' % (outn, current_iter + 1, total_files)
                    else:
                        tstr = '%s%d/%d' % (outn, current_iter + 1, total_files)
                    animator(p, current_iter, tstr, **par_args)

    # delete temp file if there
    import os
    if os.path.isfile('tmp.txt'):
        os.remove('tmp.txt')

    ############################################
    #     Get concordances into DataFrame      #
    ############################################

    if not no_conc:
        all_conc_lines = []
        for sc_name, resu in sorted(conc_results.items()):
            if only_unique:
                unique_results = uniquify(resu)
            else:
                unique_results = resu
            #make into series
            pindex = 'c f s l m r'.encode('utf-8').split()
            for fname, spkr, start, word, end in unique_results:
                #spkr = str(spkr, errors = 'ignore')
                fname = os.path.basename(fname)
                all_conc_lines.append(Series([sc_name,
                                     fname, \
                                     spkr, \
                                     start, \
                                     word, \
                                     end], \
                                     index = pindex))

        # randomise results...
        if random:
            from random import shuffle
            shuffle(all_conc_lines)

        conc_df = pd.concat(all_conc_lines, axis = 1).T

        # not doing anything yet --- this is for multimodal concordancing
        add_links = False
        if not add_links:
            conc_df.columns = ['c', 'f', 's', 'l', 'm', 'r']
        else:
            conc_df.columns = ['c', 'f', 's', 'l', 'm', 'r', 'link']

        if all(x == '' for x in list(conc_df['s'].values)):
            conc_df.drop('s', axis = 1, inplace = True)

        #if kwargs.get('note'):
        #    kwargs['note'].progvar.set(100)

        #if kwargs.get('printstatus', True):
        #    thetime = strftime("%H:%M:%S", localtime())
        #    finalstring = '\n\n%s: Concordancing finished! %d matches.\n' % (thetime, len(conc_df.index))
        #    print(finalstring)

        from interrogation import Concordance
        output = Concordance(conc_df)
        if only_conc:
            output.query = locs
            if quicksave:
                output.save()

            if kwargs.get('printstatus', True):
                thetime = strftime("%H:%M:%S", localtime())
                finalstring = '\n\n%s: Concordancing finished! %d results.' % (thetime, len(conc_df))
                print(finalstring)
            return output

        #output.query = locs

        #return output 

    ############################################
    #     Get interrogation into DataFrame     #
    ############################################

    if not only_conc:
        if countmode:
            df = Series({k: sum(v) for k, v in sorted(count_results.items())})
            tot = df.sum()
        else:
            the_big_dict = {}
            unique_results = set([item for sublist in list(results.values()) for item in sublist])
            for word in unique_results:
                the_big_dict[word] = [subcorp_result[word] for name, subcorp_result in sorted(results.items(), key=lambda x: x[0])]
            # turn master dict into dataframe, sorted
            df = DataFrame(the_big_dict, index = sorted(results.keys()))

            numentries = len(df.columns)
            tot = df.sum(axis = 1)
            total_total = df.sum().sum()

        ############################################
        # Format, output as Interrogation object   #
        ############################################

        if not countmode:
            if not corpus.subcorpora or singlefile:
                if not files_as_subcorpora:
                    if not kwargs.get('df1_always_df'):
                        df = Series(df.ix[0])
                        df.sort_values(ascending = False, inplace = True)
                        tot = df.sum()
                        numentries = len(df.index)
                        total_total = tot

        # sort by total
        if type(df) == pd.core.frame.DataFrame:
            if not df.empty:   
                df.ix['Total-tmp'] = df.sum()
                the_tot = df.ix['Total-tmp']
                df = df[the_tot.argsort()[::-1]]
                df = df.drop('Total-tmp', axis = 0)

        # format final string
        if kwargs.get('printstatus', True):
            thetime = strftime("%H:%M:%S", localtime())
            finalstring = '\n\n%s: Interrogation finished!' % thetime
            if countmode:
                finalstring += ' %d matches.' % tot
            else:
                finalstring += ' %d unique results, %d total occurrences.' % (numentries, total_total)
            print(finalstring)

        if not no_conc:
            interro = Interrogation(results = df, totals = tot, query = locs, concordance = output)
        else:
            interro = Interrogation(results = df, totals = tot, query = locs)

        if quicksave:
            interro.save()
        
        return interro
示例#9
0
    def get_stats(sents, **dummy_args):
        """get a bunch of frequencies on interpersonal phenomena"""
        import os
        import re
        from collections import Counter
        statsmode_results = Counter()  
        # first, put the relevant trees into temp file
        if kwargs.get('outname'):
            to_open = 'tmp-%s.txt' % kwargs['outname']
        else:
            to_open = 'tmp.txt'
        with open(to_open, "w") as fo:
            for sent in sents:
                statsmode_results['Sentences'] += 1
                sts = sent.parse_string.rstrip()
                encd = sts.encode('utf-8', errors = 'ignore') + '\n'
                fo.write(encd)
                deps = get_deps(sent, dep_type)
                numpass = len([x for x in deps.links if x.type.endswith('pass')])
                statsmode_results['Passives'] += numpass
                statsmode_results['Tokens'] += len(sent.tokens)
                words = [w.word for w in sent.tokens if w.word.isalnum()]
                statsmode_results['Words'] += len(words)
                statsmode_results['Characters'] += len(''.join(words))

        # count moods via trees          (/\?/ !< __)
        from dictionaries.process_types import processes
        from other import as_regex
        tregex_qs = {'Imperative': r'ROOT < (/(S|SBAR)/ < (VP !< VBD !< VBG !$ NP !$ SBAR < NP !$-- S !$-- VP !$ VP)) !<< (/\?/ !< __) !<<- /-R.B-/ !<<, /(?i)^(-l.b-|hi|hey|hello|oh|wow|thank|thankyou|thanks|welcome)$/',
                     'Open interrogative': r'ROOT < SBARQ <<- (/\?/ !< __)', 
                     'Closed interrogative': r'ROOT ( < (SQ < (NP $+ VP)) << (/\?/ !< __) | < (/(S|SBAR)/ < (VP $+ NP)) <<- (/\?/ !< __))',
                     'Unmodalised declarative': r'ROOT < (S < (/(NP|SBAR|VP)/ $+ (VP !< MD)))',
                     'Modalised declarative': r'ROOT < (S < (/(NP|SBAR|VP)/ $+ (VP < MD)))',
                     'Open class words': r'/^(NN|JJ|VB|RB)/ < __',
                     'Closed class words': r'__ !< __ !> /^(NN|JJ|VB|RB)/',
                     'Clauses': r'/^S/ < __',
                     'Interrogative': r'ROOT << (/\?/ !< __)',
                     'Mental processes': r'VP > /^(S|ROOT)/ <+(VP) (VP <<# /%s/)' % as_regex(processes.mental, boundaries = 'w'),
                     'Verbal processes': r'VP > /^(S|ROOT)/ <+(VP) (VP <<# /%s/)' % as_regex(processes.verbal, boundaries = 'w'),
                     'Relational processes': r'VP > /^(S|ROOT)/ <+(VP) (VP <<# /%s/)' % as_regex(processes.relational, boundaries = 'w')
                     }

        for name, q in sorted(tregex_qs.items()):
            res = tregex_engine(query = q, 
                  options = ['-o', '-C'], 
                  corpus = to_open,  
                  root = root)
            statsmode_results[name] += int(res)
            global numdone
            numdone += 1
            if root:
                root.update()
            else:
                tot_string = str(numdone + 1) + '/' + str(total_files)
                if kwargs.get('outname'):
                    tot_string = '%s: %s' % (kwargs['outname'], tot_string)
                animator(p, numdone, tot_string, **par_args)
            if kwargs.get('note', False):
                kwargs['note'].progvar.set((numdone * 100.0 / total_files / denom) + startnum)
        os.remove(to_open)
        return statsmode_results, []
示例#10
0
文件: build.py 项目: xsongx/corpkit
def dictmaker(path, 
              dictname,
              query = 'any',
              dictpath = 'data/dictionaries',
              lemmatise = False,
              just_content_words = False,
              use_dependencies = False):
    """makes a pickle wordlist named dictname in dictpath"""
    import corpkit
    import os
    import pickle
    import re
    import nltk
    from time import localtime, strftime
    from io import StringIO
    import shutil
    from collections import Counter
    from .textprogressbar import TextProgressBar
    from process import tregex_engine
    try:
        from IPython.display import display, clear_output
    except ImportError:
        pass
    try:
        get_ipython().getoutput()
    except TypeError:
        have_ipython = True
    except NameError:
        import subprocess
        have_ipython = False
    
    if lemmatise:
        dictname = dictname + '-lemmatised'
    if not dictname.endswith('.p'):
        dictname = dictname + '.p'

    # allow direct passing of dirs
    path_is_list = False
    one_big_corpus = False
    if type(path) == str:
        sorted_dirs = [d for d in os.listdir(path) if os.path.isdir(os.path.join(path,d))]
    # if no subcorpora, just do the dir passed in
        if len(sorted_dirs) == 0:
            one_big_corpus = True
            sorted_dirs = [path]
    elif type(path) == list:
        path_is_list = True
        sorted_dirs = sorted(path)
        if type(sorted_dirs[0]) == int:
            sorted_dirs = [str(d) for d in sorted_dirs]

    try:
        sorted_dirs.sort(key=int)
    except:
        pass
    try:
        if not os.path.exists(dictpath):
            os.makedirs(dictpath)
    except IOError:
        print("Error making " + dictpath + "/ directory.")
    while os.path.isfile(os.path.join(dictpath, dictname)):
        time = strftime("%H:%M:%S", localtime())
        selection = input('\n%s: %s already exists in %s.\n' \
               '          You have the following options:\n\n' \
               '              a) save with a new name\n' \
               '              b) delete %s\n' \
               '              c) exit\n\nYour selection: ' % (time, dictname, dictpath, os.path.join(dictpath, dictname)))
        if 'a' in selection:
            sel = input('\nNew save name: ')
            dictname = sel
            if lemmatise:
                dictname = dictname.replace('-lemmatised.p', '')
                dictname = dictname + '-lemmatised'
            if not dictname.endswith('.p'):
                dictname = dictname + '.p'
        elif 'b' in selection:
            os.remove(os.path.join(dictpath, dictname))
        elif 'c' in selection:
            print('')
            return
        else:
            as_str = str(selection)
            print('          Choice "%s" not recognised.' % selection)

    time = strftime("%H:%M:%S", localtime())
    print('\n%s: Extracting words from files ... \n' % time)

    # all this just to get a list of files and make a better progress bar
    if use_dependencies:
        counts = []
        for d in sorted_dirs:
            if not one_big_corpus:
                subcorpus = os.path.join(path, d)
            else:
                subcorpus = path
            if use_dependencies:
                files = [f for f in os.listdir(subcorpus) if f.endswith('.xml')]
            else:
                files = [f for f in os.listdir(subcorpus)]
            counts.append(len(files))
        num_files = sum(counts)
        c = 0
        p = TextProgressBar(num_files)
    else:
        p = TextProgressBar(len(sorted_dirs))

    def tokener(xmldata):
        import corpkit
        """print word, using good lemmatisation"""
        from bs4 import BeautifulSoup
        import gc
        open_classes = ['N', 'V', 'R', 'J']
        result = []
        just_good_deps = SoupStrainer('tokens')
        soup = BeautifulSoup(xmldata, parse_only=just_good_deps)   
        for token in soup.find_all('token'):
            word = token.word.text
            query = re.compile(r'.*')
            if re.search(query, word):
                if lemmatise:
                    word = token.lemma.text
                    if just_content_words:
                        if not token.pos.text[0] in open_classes:
                            continue        
                result.append(word)
        # attempt to stop memory problems. 
        # not sure if this helps, though:
        soup.decompose()
        soup = None
        data = None
        gc.collect()
        return result
    
    # translate 'any' query
    if query == 'any':
        if lemmatise:
            query = r'__ <# (__ !< __)'
        else:
            query = r'__ !< __'
    
    if lemmatise:
        options = ['-o']
    else:
        options = ['-t', '-o']
    
    if use_dependencies:
        from bs4 import BeautifulSoup, SoupStrainer
        if query == 'any':
            query = r'.*'
        query = re.compile(query)

    allwords = []

    for index, d in enumerate(sorted_dirs):
        if not use_dependencies:
            p.animate(index)
        if not path_is_list:
            if len(sorted_dirs) == 1:
                subcorp = d
            else:
                subcorp = os.path.join(path, d)
        else:
            subcorp = d

        # check query first time through    
        if not use_dependencies:
            if index == 0:
                trees_found = tregex_engine(corpus = subcorp, check_for_trees = True)
                if not trees_found:
                    lemmatise = False
                    dictname = dictname.replace('-lemmatised', '')
            if trees_found:
                results = tregex_engine(corpus = subcorp, options = options, query = query, 
                                        lemmatise = lemmatise,
                                        just_content_words = just_content_words)

                for result in results:
                    allwords.append(result)  

        elif use_dependencies:
            regex_nonword_filter = re.compile("[A-Za-z]")
            results = []
            fs = [os.path.join(subcorp, f) for f in os.listdir(subcorp)]
            for f in fs:
                p.animate(c, str(c) + '/' + str(num_files))
                c += 1
                data = open(f).read()
                result_from_a_file = tokener(data)
                for w in result_from_a_file:
                    if re.search(regex_nonword_filter, w):
                        allwords.append(w.lower())

        if not use_dependencies:
            if not trees_found:
                for f in os.listdir(subcorp):
                    raw = str(open(os.path.join(subcorp, f)).read(), 'utf-8', errors = 'ignore')
                    sent_tokenizer=nltk.data.load('tokenizers/punkt/english.pickle')
                    sents = sent_tokenizer.tokenize(raw)
                    tokenized_sents = [nltk.word_tokenize(i) for i in sents]
                    for sent in tokenized_sents:
                        for w in sent:
                            allwords.append(w.lower()) 

    #100%
    p.animate(len(sorted_dirs))
    
    # make a dict
    dictionary = Counter(allwords)

    with open(os.path.join(dictpath, dictname), 'wb') as handle:
        pickle.dump(dictionary, handle)
    time = strftime("%H:%M:%S", localtime())
    print('\n\n' + time + ': Done! ' + dictname + ' created in ' + dictpath + '/')
示例#11
0
def interrogator(corpus, 
            search, 
            query = 'any', 
            show = 'w',
            exclude = False,
            excludemode = 'any',
            searchmode = 'all',
            dep_type = 'collapsed-ccprocessed-dependencies',
            case_sensitive = False,
            save = False,
            just_speakers = False,
            preserve_case = False,
            lemmatag = False,
            files_as_subcorpora = False,
            only_unique = False,
            random = False,
            only_format_match = False,
            multiprocess = False,
            spelling = False,
            regex_nonword_filter = r'[A-Za-z0-9:_]',
            gramsize = 2,
            split_contractions = False,
            do_concordancing = False,
            maxconc = 9999,
            **kwargs):
    """interrogate corpus, corpora, subcorpus and file objects

    see corpkit.interrogation.interrogate() for docstring"""

    only_conc = False
    no_conc = False
    if do_concordancing is False:
        no_conc = True
    if type(do_concordancing) == str and do_concordancing.lower() == 'only':
        only_conc = True
        no_conc = False

    # iteratively count conc lines
    numconc = 0

    # store kwargs
    locs = locals()
    
    if kwargs:
        for k, v in kwargs.items():
            locs[k] = v
        locs.pop('kwargs', None)

    import corpkit
    from interrogation import Interrogation
    from corpus import Datalist, Corpora, Corpus, File
    from process import tregex_engine, get_deps
    import pandas as pd
    from pandas import DataFrame, Series
    from collections import Counter
    from other import as_regex
    from time import localtime, strftime
    from textprogressbar import TextProgressBar
    from process import animator
    from dictionaries.word_transforms import wordlist, taglemma
    import corenlp_xml
    import codecs
    import signal

    original_sigint = signal.getsignal(signal.SIGINT)

    if kwargs.get('paralleling', None) is None:
        original_sigint = signal.getsignal(signal.SIGINT)
        
        def signal_handler(signal, frame):
            """pause on ctrl+c, rather than just stop loop"""   
            import signal
            import sys
            from time import localtime, strftime
            signal.signal(signal.SIGINT, original_sigint)
            thetime = strftime("%H:%M:%S", localtime())
            try:
                sel = raw_input('\n\n%s: Paused. Press any key to resume, or ctrl+c to quit.\n' % thetime)
            except NameError:
                sel = input('\n\n%s: Paused. Press any key to resume, or ctrl+c to quit.\n' % thetime)
            time = strftime("%H:%M:%S", localtime())
            print('%s: Interrogation resumed.\n' % time)
            signal.signal(signal.SIGINT, signal_handler)

        signal.signal(signal.SIGINT, signal_handler)

    # find out if using gui
    root = kwargs.get('root')
    note = kwargs.get('note')

    # convert path to corpus object
    if corpus.__class__ not in [Corpus, Corpora, File]:
        if not multiprocess and not kwargs.get('outname'):
            corpus = Corpus(corpus, print_info = False)

    # figure out how the user has entered the query and normalise
    from process import searchfixer
    search = searchfixer(search, query)
    
    if 'l' in show and search.get('t'):
        from nltk.stem.wordnet import WordNetLemmatizer
        lmtzr=WordNetLemmatizer()

    if type(show) == str:
        show = [show]

    def is_multiquery(corpus, search, query, just_speakers):
        """determine if multiprocessing is needed
        do some retyping if need be as well"""
        im = False
        from collections import OrderedDict
        #if hasattr(corpus, '__iter__'):
        #    im = True
        # so we can do search = 't', query = ['NP', 'VP']:
        if type(query) == list:
            if query != list(search.values())[0] or len(list(search.keys())) > 1:
                query = {c.title(): c for c in query}
        if type(query) == dict or type(query) == OrderedDict:
            im = True
        if just_speakers:
            if just_speakers == 'each':
                im = True
                just_speakers = ['each']
            if just_speakers == ['each']:
                im = True
            if type(just_speakers) == str:
                im = False
                just_speakers = [just_speakers]
            if type(just_speakers) == list:
                if len(just_speakers) > 1:
                    im = True
        if type(search) == dict:
            if all(type(i) == dict for i in list(search.values())):
                im = True
        return im, corpus, search, query, just_speakers

    def slow_tregex(sents, **dummy_args):
        """do the speaker-specific version of tregex queries"""
        speakr = dummy_args.get('speaker', False)
        import os
        from process import tregex_engine
        # first, put the relevant trees into temp file
        if kwargs.get('outname'):
            to_open = 'tmp-%s.txt' % kwargs['outname']
        else:
            to_open = 'tmp.txt'
        to_write = '\n'.join([sent._parse_string.strip() for sent in sents \
                              if sent.parse_string is not None])
        to_write.encode('utf-8', errors = 'ignore')
        with open(to_open, "w") as fo:
            encd = to_write.encode('utf-8', errors = 'ignore') + '\n'
            fo.write(encd)
        q = list(search.values())[0]
        ops = ['-o', '-%s' % translated_option]
        concs = []
        res = tregex_engine(query = q, 
                            options = ops, 
                            corpus = to_open,
                            root = root,
                            preserve_case = True)
        if not no_conc:
            ops += ['-w', '-f']
            whole_res = tregex_engine(query = q, 
                            options = ops, 
                            corpus = to_open,
                            root = root,
                            preserve_case = True) 

            res = format_tregex(res)
            whole_res = format_tregex(whole_res, whole = True)
            concs = make_conc_lines_from_whole_mid(whole_res, res, speakr)

        if root:
            root.update()
        try:
            os.remove(to_open)
        except OSError:
            pass
        if countmode:
            return(len(res))
        else:
            return res, concs

    def get_stats(sents, **dummy_args):
        """get a bunch of frequencies on interpersonal phenomena"""
        import os
        import re
        from collections import Counter
        statsmode_results = Counter()  
        # first, put the relevant trees into temp file
        if kwargs.get('outname'):
            to_open = 'tmp-%s.txt' % kwargs['outname']
        else:
            to_open = 'tmp.txt'
        with open(to_open, "w") as fo:
            for sent in sents:
                statsmode_results['Sentences'] += 1
                sts = sent.parse_string.rstrip()
                encd = sts.encode('utf-8', errors = 'ignore') + '\n'
                fo.write(encd)
                deps = get_deps(sent, dep_type)
                numpass = len([x for x in deps.links if x.type.endswith('pass')])
                statsmode_results['Passives'] += numpass
                statsmode_results['Tokens'] += len(sent.tokens)
                words = [w.word for w in sent.tokens if w.word.isalnum()]
                statsmode_results['Words'] += len(words)
                statsmode_results['Characters'] += len(''.join(words))

        # count moods via trees          (/\?/ !< __)
        from dictionaries.process_types import processes
        from other import as_regex
        tregex_qs = {'Imperative': r'ROOT < (/(S|SBAR)/ < (VP !< VBD !< VBG !$ NP !$ SBAR < NP !$-- S !$-- VP !$ VP)) !<< (/\?/ !< __) !<<- /-R.B-/ !<<, /(?i)^(-l.b-|hi|hey|hello|oh|wow|thank|thankyou|thanks|welcome)$/',
                     'Open interrogative': r'ROOT < SBARQ <<- (/\?/ !< __)', 
                     'Closed interrogative': r'ROOT ( < (SQ < (NP $+ VP)) << (/\?/ !< __) | < (/(S|SBAR)/ < (VP $+ NP)) <<- (/\?/ !< __))',
                     'Unmodalised declarative': r'ROOT < (S < (/(NP|SBAR|VP)/ $+ (VP !< MD)))',
                     'Modalised declarative': r'ROOT < (S < (/(NP|SBAR|VP)/ $+ (VP < MD)))',
                     'Open class words': r'/^(NN|JJ|VB|RB)/ < __',
                     'Closed class words': r'__ !< __ !> /^(NN|JJ|VB|RB)/',
                     'Clauses': r'/^S/ < __',
                     'Interrogative': r'ROOT << (/\?/ !< __)',
                     'Mental processes': r'VP > /^(S|ROOT)/ <+(VP) (VP <<# /%s/)' % as_regex(processes.mental, boundaries = 'w'),
                     'Verbal processes': r'VP > /^(S|ROOT)/ <+(VP) (VP <<# /%s/)' % as_regex(processes.verbal, boundaries = 'w'),
                     'Relational processes': r'VP > /^(S|ROOT)/ <+(VP) (VP <<# /%s/)' % as_regex(processes.relational, boundaries = 'w')
                     }

        for name, q in sorted(tregex_qs.items()):
            res = tregex_engine(query = q, 
                  options = ['-o', '-C'], 
                  corpus = to_open,  
                  root = root)
            statsmode_results[name] += int(res)
            global numdone
            numdone += 1
            if root:
                root.update()
            else:
                tot_string = str(numdone + 1) + '/' + str(total_files)
                if kwargs.get('outname'):
                    tot_string = '%s: %s' % (kwargs['outname'], tot_string)
                animator(p, numdone, tot_string, **par_args)
            if kwargs.get('note', False):
                kwargs['note'].progvar.set((numdone * 100.0 / total_files / denom) + startnum)
        os.remove(to_open)
        return statsmode_results, []

    def make_conc_lines_from_whole_mid(wholes, middle_column_result, 
                                       speakr = False):
        import re, os
        if speakr is False:
            speakr = ''
        conc_lines = []
        # remove duplicates from results
        unique_wholes = []
        unique_middle_column_result = []
        duplicates = []
        for index, ((f, whole), mid) in enumerate(zip(wholes, middle_column_result)):
            if '-join-'.join([f, whole, mid]) not in duplicates:
                duplicates.append('-join-'.join([f, whole, mid]))
                unique_wholes.append([f, whole])
                unique_middle_column_result.append(mid)

        # split into start, middle and end, dealing with multiple occurrences
        for index, ((f, whole), mid) in enumerate(zip(unique_wholes, unique_middle_column_result)):
            reg = re.compile(r'([^a-zA-Z0-9-]|^)(' + re.escape(mid) + r')([^a-zA-Z0-9-]|$)', re.IGNORECASE | re.UNICODE)
            offsets = [(m.start(), m.end()) for m in re.finditer(reg,whole)]
            for offstart, offend in offsets:              
                start, middle, end = whole[0:offstart].strip(), whole[offstart:offend].strip(), whole[offend:].strip()
                conc_lines.append([os.path.basename(f), speakr, start, middle, end])
        return conc_lines

    def uniquify(conc_lines):
        from collections import OrderedDict
        unique_lines = []
        checking = []
        for index, (f, speakr, start, middle, end) in enumerate(conc_lines):
            joined = ' '.join([speakr, start, 'MIDDLEHERE:', middle, ':MIDDLEHERE', end])
            if joined not in checking:
                unique_lines.append(conc_lines[index])
            checking.append(joined)
        return unique_lines

    def lemmatiser(list_of_words, tag):
        """take a list of unicode words and a tag and return a lemmatised list."""
        output = []
        for word in list_of_words:
            if translated_option.startswith('u'):
                if word.lower() in list(taglemma.keys()):
                    word = taglemma[word.lower()]
                else:
                    if word == 'x':
                        word = 'Other'
            # only use wordnet lemmatiser when appropriate
            else:
                if word in wordlist:
                    word = wordlist[word]
                word = lmtzr.lemmatize(word, tag)
            output.append(word)
        return output

    def gettag(query, lemmatag = False):
        """
        Find tag for WordNet lemmatisation
        """
        import re

        tagdict = {'N': 'n',
                   'A': 'a',
                   'V': 'v',
                   'A': 'r',
                   'None': False,
                   '': False,
                   'Off': False}

        if lemmatag is False:
            tag = 'n' # same default as wordnet
            # attempt to find tag from tregex query
            tagfinder = re.compile(r'^[^A-Za-z]*([A-Za-z]*)')
            tagchecker = re.compile(r'^[A-Z]{1,4}$')
            qr = query.replace(r'\w', '').replace(r'\s', '').replace(r'\b', '')
            treebank_tag = re.findall(tagfinder, qr)
            if re.match(tagchecker, treebank_tag[0]):
                tag = tagdict.get(treebank_tag[0], 'n')
        elif lemmatag:
            tag = lemmatag
        return tag

    def format_tregex(results, whole = False):
        """format tregex by show list"""
        if countmode:
            return results
        import re
        done = []
        
        if whole:
            fnames = [x for x, y in results]
            results = [y for x, y in results]

        if 'l' in show or 'pl' in show:
            lemmata = lemmatiser(results, gettag(search.get('t'), lemmatag))
        else:
            lemmata = [None for i in results]
        for word, lemma in zip(results, lemmata):
            bits = []
            if exclude and exclude.get('w'):
                if len(list(exclude.keys())) == 1 or excludemode == 'any':
                    if re.search(exclude.get('w'), word):
                        continue
                if len(list(exclude.keys())) == 1 or excludemode == 'any':
                    if re.search(exclude.get('l'), lemma):
                        continue
                if len(list(exclude.keys())) == 1 or excludemode == 'any':
                    if re.search(exclude.get('p'), word):
                        continue
                if len(list(exclude.keys())) == 1 or excludemode == 'any':
                    if re.search(exclude.get('pl'), lemma):
                        continue
            if exclude and excludemode == 'all':
                num_to_cause_exclude = len(list(exclude.keys()))
                current_num = 0
                if exclude.get('w'):
                    if re.search(exclude.get('w'), word):
                        current_num += 1
                if exclude.get('l'):
                    if re.search(exclude.get('l'), lemma):
                        current_num += 1
                if exclude.get('p'):
                    if re.search(exclude.get('p'), word):
                        current_num += 1
                if exclude.get('pl'):
                    if re.search(exclude.get('pl'), lemma):
                        current_num += 1   
                if current_num == num_to_cause_exclude:
                    continue                 

            for i in show:
                if i == 't':
                    bits.append(word)
                if i == 'l':
                    bits.append(lemma)
                elif i == 'w':
                    bits.append(word)
                elif i == 'p':
                    bits.append(word)
                elif i == 'pl':
                    bits.append(lemma)
            joined = '/'.join(bits)
            done.append(joined)

        if whole:
            done = zip(fnames, done)

        return done

    def tok_by_list(pattern, list_of_toks, concordancing = False, **kwargs):
        """search for regex in plaintext corpora"""
        import re
        if type(pattern) == str:
            pattern = [pattern]
        if not case_sensitive:
            pattern = [p.lower() for p in pattern]
        if not concordancing:
            if case_sensitive:
                matches = [m for m in list_of_toks if m in pattern]
            else:
                matches = [m for m in list_of_toks if m.lower() in pattern]
        else:
            matches = []
            for index, token in enumerate(list_of_toks):
                if token in pattern:
                    match = [' '.join([t for t in unsplitter(list_of_toks[:index])])[-140:]]
                    match.append(token)
                    match.append(' '.join([t for t in unsplitter(list_of_toks[index + 1:])])[:140])
                    matches.append(match)
        if countmode:
            return(len(matches))
        else:
            return matches

    def unsplitter(lst):
        """unsplit contractions and apostophes from tokenised text"""
        if split_contractions:
            return lst
        unsplit = []
        for index, t in enumerate(lst):
            if index == 0 or index == len(lst) - 1:
                unsplit.append(t)
                continue
            if "'" in t and not t.endswith("'"):
                rejoined = ''.join([lst[index - 1], t])
                unsplit.append(rejoined)
            else:
                if not "'" in lst[index + 1]:
                    unsplit.append(t)
        return unsplit

    def tok_ngrams(pattern, list_of_toks, concordancing = False, split_contractions = True):
        from collections import Counter
        import re
        ngrams = Counter()
        result = []
        # if it's not a compiled regex
        list_of_toks = [x for x in list_of_toks if re.search(regex_nonword_filter, x)]
        if pattern.lower() == 'any':
            pattern = r'.*'

        if not split_contractions:
            list_of_toks = unsplitter(list_of_toks)
            
            #list_of_toks = [x for x in list_of_toks if "'" not in x]
        for index, w in enumerate(list_of_toks):
            try:
                the_gram = [list_of_toks[index+x] for x in range(gramsize)]
                if not any(re.search(pattern, x) for x in the_gram):
                    continue
                ngrams[' '.join(the_gram)] += 1
            except IndexError:
                pass

        # turn counter into list of results
        for k, v in list(ngrams.items()):
            if v > 1:
                for i in range(v):
                    result.append(k)
        if countmode:
            return(len(result))
        else:
            return result

    def compiler(pattern):
        """compile regex or fail gracefully"""
        import re
        try:
            if case_sensitive:
                comped = re.compile(pattern)
            else:
                comped = re.compile(pattern, re.IGNORECASE)
            return comped
        except:
            import traceback
            import sys
            from time import localtime, strftime
            exc_type, exc_value, exc_traceback = sys.exc_info()
            lst = traceback.format_exception(exc_type, exc_value,
                          exc_traceback)
            error_message = lst[-1]
            thetime = strftime("%H:%M:%S", localtime())
            print('%s: Query %s' % (thetime, error_message))
            if root:
                return 'Bad query'
            else:
                raise ValueError('%s: Query %s' % (thetime, error_message))

    def tok_by_reg(pattern, list_of_toks, concordancing = False, **kwargs):
        """search for regex in plaintext corpora"""
        import re
        comped = compiler(pattern)
        if comped == 'Bad query':
            return 'Bad query'
        if not concordancing:
            matches = [m for m in list_of_toks if re.search(comped, m)]
        else:
            matches = []
            for index, token in enumerate(list_of_toks):
                if re.search(comped, token):
                    match = [' '.join([t for t in unsplitter(list_of_toks[:index])])[-140:]]
                    match.append(re.search(comped, token).group(0))
                    match.append(' '.join([t for t in unsplitter(list_of_toks[index + 1:])])[:140])
                    matches.append(match)
        if countmode:
            return(len(matches))
        else:
            return matches

    def plaintext_regex_search(pattern, plaintext_data, concordancing = False, **kwargs):
        """search for regex in plaintext corpora

        it searches over lines, so the user needs to be careful.
        """
        import re
        if concordancing:
            pattern = r'(.{,140})\b(' + pattern + r')\b(.{,140})'
        compiled_pattern = compiler(pattern)
        if compiled_pattern == 'Bad query':
            return 'Bad query'
        matches = re.findall(compiled_pattern, plaintext_data)
        if concordancing:
            matches = [list(m) for m in matches]
        if not concordancing:
            for index, i in enumerate(matches):
                if type(i) == tuple:
                    matches[index] = i[0]
        if countmode:
            return(len(matches))
        else:
            return matches

    def correct_spelling(a_string):
        if not spelling:
            return a_string
        from dictionaries.word_transforms import usa_convert
        if spelling.lower() == 'uk':
            usa_convert = {v: k for k, v in list(usa_convert.items())}
        spell_out = []
        bits = a_string.split('/')
        for index, i in enumerate(bits):
            converted = usa_convert.get(i.lower(), i)
            if i.islower() or preserve_case is False:
                converted = converted.lower()
            elif i.isupper() and preserve_case:
                converted = converted.upper()
            elif i.istitle() and preserve_case:
                converted = converted.title()
            bits[index] = converted
        r = '/'.join(bits)
        return r

    def plaintext_simple_search(pattern, plaintext_data, concordancing = False, **kwargs):
        """search for tokens in plaintext corpora"""
        import re
        result = []
        if type(pattern) == str:
            pattern = [pattern]
        for p in pattern:
            if concordancing:
                pat = r'(.{0,140})\b(' + re.escape(p) + r')\b(.{0,140})'
            pat = compiler(pat)
            if pat == 'Bad query':
                return 'Bad query'
            matches = re.findall(pat, plaintext_data)
            if concordancing:
                matches = [list(m) for m in matches]
                for i in matches:
                    result.append(i)
            else:   
                for m in range(len(matches)):
                    result.append(p)
        return result

    # do multiprocessing if need be
    im, corpus, search, query, just_speakers = is_multiquery(corpus, search, query, just_speakers)

    if hasattr(corpus, '__iter__') and im:
        corpus = Corpus(corpus)
    if hasattr(corpus, '__iter__') and not im:
        im = True
    if corpus.__class__ == Corpora:
        im = True

    if not im and multiprocess:
        im = True
        corpus = corpus[:]
    # if it's already been through pmultiquery, don't do it again
    
    locs['search'] = search
    locs['query'] = query
    locs['just_speakers'] = just_speakers
    locs['corpus'] = corpus
    locs['multiprocess'] = multiprocess
    locs['print_info'] = kwargs.get('printstatus', True)

    if im:
        signal.signal(signal.SIGINT, original_sigint)
        from multiprocess import pmultiquery
        return pmultiquery(**locs)

    cname = corpus.name
    subcorpora = corpus.subcorpora
    
    try:
        datatype = corpus.datatype
        singlefile = corpus.singlefile
    except AttributeError:
        datatype = 'parse'
        singlefile = False
        
    # store all results in here
    results = {}
    count_results = {}
    conc_results = {}
    # check if just counting
    countmode = 'c' in show
    if countmode:
        no_conc = True
        only_conc = False
    # where we are at in interrogation
    current_iter = 0

    # multiprocessing progress bar
    denom = kwargs.get('denominator', 1)
    startnum = kwargs.get('startnum', 0)

    ############################################
    # Determine the search function to be used #
    ############################################
    
    # simple tregex is tregex over whole dirs
    simple_tregex_mode = False
    statsmode = False
    if not just_speakers and 't' in list(search.keys()):
        simple_tregex_mode = True
    else:
        if datatype == 'plaintext':
            if search.get('n'):
                raise NotImplementedError('Use a tokenised corpus for n-gramming.')
                #searcher = plaintext_ngram
                optiontext = 'n-grams via plaintext'
            if search.get('w'):
                if kwargs.get('regex', True):
                    searcher = plaintext_regex_search
                else:
                    searcher = plaintext_simple_search
                optiontext = 'Searching plaintext'

        elif datatype == 'tokens':
            if search.get('n'):
                searcher = tok_ngrams
                optiontext = 'n-grams via tokens'
            elif search.get('w'):
                if kwargs.get('regex', True):
                    searcher = tok_by_reg
                else:
                    searcher = tok_by_list
                if type(search.get('w')) == list:
                    searcher = tok_by_list
                optiontext = 'Searching tokens'
        only_parse = ['r', 'd', 'g', 'dl', 'gl', 'df', 'gf', 'dp', 'gp', 'f', 'd2', 'd2f', 'd2p', 'd2l']
        if datatype != 'parse' and any(i in only_parse for i in list(search.keys())):
            raise ValueError('Need parsed corpus to search with "%s" option(s).' % ', '.join([i for i in list(search.keys()) if i in only_parse]))

        elif datatype == 'parse':
            if search.get('t'):
                searcher = slow_tregex
            elif search.get('s'):
                searcher = get_stats
                statsmode = True
                optiontext = 'General statistics'
                global numdone
                numdone = 0
                no_conc = True
                only_conc = False
                do_concordancing = False
            else:
                from depsearch import dep_searcher
                searcher = dep_searcher
                optiontext = 'Dependency querying'

    ############################################
    #      Set some Tregex-related values      #
    ############################################

    if search.get('t'):
        translated_option = 't'
        query = search.get('t')

        # check the query
        q = tregex_engine(corpus = False, query = search.get('t'), 
                          options = ['-t'], check_query = True, root = root)
        if query is False:
            if root:
                return 'Bad query'
            else:
                return

        optiontext = 'Searching parse trees'
        if 'p' in show or 'pl' in show:
            translated_option = 'u'
            if type(search['t']) == list:
                search['t'] = r'__ < (/%s/ !< __)' % as_regex(search['t'], boundaries = 'line', 
                                            case_sensitive = case_sensitive)
            if search['t'] == 'any':
                search['t'] = r'__ < (/.?[A-Za-z0-9].?/ !< __)'
        elif 't' in show:
            translated_option = 'o'
            if type(search['t']) == list:
                search['t'] = r'__ < (/%s/ !< __)' % as_regex(search['t'], boundaries = 'line', 
                                            case_sensitive = case_sensitive)
            if search['t'] == 'any':
                search['t'] = r'__ < (/.?[A-Za-z0-9].?/ !< __)'
        elif 'w' in show:
            translated_option = 't'
            if type(search['t']) == list:
                search['t'] = r'/%s/ !< __' % as_regex(search['t'], boundaries = 'line', 
                                            case_sensitive = case_sensitive)
            if search['t'] == 'any':
                search['t'] = r'/.?[A-Za-z0-9].?/ !< __'
        elif 'c' in show:
            only_count = True
            translated_option = 'C'
            if type(search['t']) == list:
                search['t'] = r'/%s/ !< __'  % as_regex(search['t'], boundaries = 'line', 
                                            case_sensitive = case_sensitive)
            if search['t'] == 'any':
                search['t'] = r'/.?[A-Za-z0-9].?/ !< __'
        elif 'l' in show:
            translated_option = 't'
            if type(search['t']) == list:
                search['t'] = r'/%s/ !< __' % as_regex(search['t'], boundaries = 'line', 
                                            case_sensitive = case_sensitive)
            if search['t'] == 'any':
                search['t'] = r'/.?[A-Za-z0-9].?/ !< __'

        query = search['t']

    ############################################
    # Make iterable for corpus/subcorpus/file  #
    ############################################

    if corpus.__class__ == Datalist:
        to_iterate_over = {}
        for subcorpus in corpus:
            to_iterate_over[(subcorpus.name, subcorpus.path)] = subcorpus.files
    elif singlefile:
        to_iterate_over = {(corpus.name, corpus.path): [corpus]}
    elif not subcorpora:
        to_iterate_over = {(corpus.name, corpus.path): corpus.files}
    else:
        to_iterate_over = {}
        for subcorpus in subcorpora:
            to_iterate_over[(subcorpus.name, subcorpus.path)] = subcorpus.files
        #for k, v in sorted(corpus.structure.items(), key=lambda obj: obj[0].name):
        #    to_iterate_over[(k.name, k.path)] = v
    if files_as_subcorpora:
        to_iterate_over = {}
        for f in corpus.files:
            to_iterate_over[(f.name, f.path)] = [f]

    ############################################
    #           Print welcome message          #
    ############################################

    if no_conc:
        message = 'Interrogating'
    else:
        message = 'Interrogating and concordancing'
    if kwargs.get('printstatus', True):
        thetime = strftime("%H:%M:%S", localtime())

        sformat = '\n                 '.join(['%s: %s' % (k.rjust(3), v) for k, v in list(search.items())])
        if search == {'s': r'.*'}:
            sformat = 'features'
        welcome = '\n%s: %s %s ...\n          %s\n          Query: %s\n          %s corpus ... \n' % \
                  (thetime, message, cname, optiontext, sformat, message)
        print(welcome)

    ############################################
    #           Make progress bar              #
    ############################################

    if simple_tregex_mode:
        total_files = len(list(to_iterate_over.keys()))
    else:
        if search.get('s'):
            total_files = sum([len(x) for x in list(to_iterate_over.values())]) * 12
        else:
            total_files = sum([len(x) for x in list(to_iterate_over.values())])

    par_args = {'printstatus': kwargs.get('printstatus', True),
                'root': root, 
                'note': note,
                'length': total_files,
                'startnum': kwargs.get('startnum'),
                'denom': kwargs.get('denominator', 1)}

    term = None
    if kwargs.get('paralleling', None) is not None:
        from blessings import Terminal
        term = Terminal()
        par_args['terminal'] = term
        par_args['linenum'] = kwargs.get('paralleling')

    outn = kwargs.get('outname', '')
    if outn:
        outn = outn + ': '
    tstr = '%s%d/%d' % (outn, current_iter, total_files)
    p = animator(None, None, init = True, tot_string = tstr, **par_args)
    tstr = '%s%d/%d' % (outn, current_iter + 1, total_files)
    animator(p, current_iter, tstr, **par_args)

    ############################################
    # Iterate over data, doing interrogations  #
    ############################################

    for (subcorpus_name, subcorpus_path), files in sorted(to_iterate_over.items()):

        conc_results[subcorpus_name] = []
        count_results[subcorpus_name] = []
        results[subcorpus_name] = Counter()
        
        # tregex over subcorpora, not files
        if simple_tregex_mode:

            op = ['-o', '-' + translated_option]                
            result = tregex_engine(query = search['t'], options = op, 
                                   corpus = subcorpus_path, root = root, preserve_case = preserve_case)

            if not countmode:
                result = format_tregex(result)

            if not no_conc:
                op += ['-w', '-f']
                whole_result = tregex_engine(query = search['t'], options = op, 
                                   corpus = subcorpus_path, root = root, preserve_case = preserve_case)
                
                if not only_format_match:
                    whole_result = format_tregex(whole_result, whole = True)

                conc_result = make_conc_lines_from_whole_mid(whole_result, result, speakr = False)

            if countmode:
                count_results[subcorpus_name] += [result]            
            else:
                result = Counter(result)
                results[subcorpus_name] += result
                if not no_conc:
                    for lin in conc_result:
                        if numconc < maxconc or not maxconc:
                            conc_results[subcorpus_name].append(lin)
                        numconc += 1

            current_iter += 1
            if kwargs.get('paralleling', None) is not None:
                tstr = '%s%d/%d' % (outn, current_iter + 1, total_files)
            else:
                tstr = '%s%d/%d' % (outn, current_iter + 1, total_files)

            animator(p, current_iter, tstr, **par_args)

        # dependencies, plaintext, tokens or slow_tregex
        else:
            for f in files:
                slow_treg_speaker_guess = kwargs.get('outname', False)
                if datatype == 'parse':
                    with open(f.path, 'r') as data:
                        data = data.read()
                        from corenlp_xml.document import Document
                        try:
                            corenlp_xml = Document(data)
                        except:
                            print('Could not read file: %s' % f.path)
                            continue
                        if just_speakers:  
                            sents = [s for s in corenlp_xml.sentences if s.speakername in just_speakers]
                            if len(just_speakers) == 1:
                                slow_treg_speaker_guess = just_speakers[0]
                            if not sents:
                                continue
                        else:
                            sents = corenlp_xml.sentences

                        res, conc_res = searcher(sents, search = search, show = show,
                            dep_type = dep_type,
                            exclude = exclude,
                            excludemode = excludemode,
                            searchmode = searchmode,
                            lemmatise = False,
                            case_sensitive = case_sensitive,
                            do_concordancing = do_concordancing,
                            only_format_match = only_format_match,
                            speaker = slow_treg_speaker_guess)
                        
                        if res == 'Bad query':
                            return 'Bad query'

                elif datatype == 'tokens':
                    import pickle
                    with codecs.open(f.path, "rb") as fo:
                        data = pickle.load(fo)
                    if not only_conc:
                        res = searcher(list(search.values())[0], data, split_contractions = split_contractions, 
                        concordancing = False)
                    if not no_conc:
                        conc_res = searcher(list(search.values())[0], data, split_contractions = split_contractions, 
                        concordancing = True)
                    if not no_conc:
                        for index, line in enumerate(conc_res):
                            line.insert(0, '')

                elif datatype == 'plaintext':
                    with codecs.open(f.path, 'rb', encoding = 'utf-8') as data:
                        data = data.read()
                        if not only_conc:
                            res = searcher(list(search.values())[0], data, 
                            concordancing = False)
                        if not no_conc:
                            conc_res = searcher(list(search.values())[0], data, 
                            concordancing = True)
                        if not no_conc:
                            for index, line in enumerate(conc_res):
                                line.insert(0, '')

                if countmode:
                    count_results[subcorpus_name] += [res]
                else:
                    # add filename and do lowercasing for conc
                    if not no_conc:
                        for index, line in enumerate(conc_res):
                            if searcher != slow_tregex:
                                line.insert(0, f.name)
                            else:
                                line[0] = f.name
                            if not preserve_case:
                                line[3:] = [x.lower() for x in line[3:]]
                            if spelling:
                                line = [correct_spelling(b) for b in line]
                            if numconc < maxconc or not maxconc:
                                conc_results[subcorpus_name].append(line)
                                numconc += 1

                    # do lowercasing and spelling
                    if not only_conc:
                        if not preserve_case:
                            if not statsmode:
                                res = [i.lower() for i in res]
                        if spelling:
                            if not statsmode:
                                res = [correct_spelling(r) for r in res]
                        #if not statsmode:
                        results[subcorpus_name] += Counter(res)
                        #else:
                        #results[subcorpus_name] += res

                if not statsmode:
                    current_iter += 1
                    if kwargs.get('paralleling', None) is not None:
                        tstr = '%s%d/%d' % (outn, current_iter + 1, total_files)
                    else:
                        tstr = '%s%d/%d' % (outn, current_iter + 1, total_files)
                    animator(p, current_iter, tstr, **par_args)

    # delete temp file if there
    import os
    if os.path.isfile('tmp.txt'):
        os.remove('tmp.txt')

    ############################################
    #     Get concordances into DataFrame      #
    ############################################

    if not no_conc:
        all_conc_lines = []
        for sc_name, resu in sorted(conc_results.items()):
            if only_unique:
                unique_results = uniquify(resu)
            else:
                unique_results = resu
            #make into series
            pindex = 'c f s l m r'.encode('utf-8').split()
            for fname, spkr, start, word, end in unique_results:
                #spkr = str(spkr, errors = 'ignore')
                fname = os.path.basename(fname)
                all_conc_lines.append(Series([sc_name,
                                     fname, \
                                     spkr, \
                                     start, \
                                     word, \
                                     end], \
                                     index = pindex))

        # randomise results...
        if random:
            from random import shuffle
            shuffle(all_conc_lines)

        conc_df = pd.concat(all_conc_lines, axis = 1).T

        # not doing anything yet --- this is for multimodal concordancing
        add_links = False
        if not add_links:
            conc_df.columns = ['c', 'f', 's', 'l', 'm', 'r']
        else:
            conc_df.columns = ['c', 'f', 's', 'l', 'm', 'r', 'link']

        if all(x == '' for x in list(conc_df['s'].values)):
            conc_df.drop('s', axis = 1, inplace = True)

        #if kwargs.get('note'):
        #    kwargs['note'].progvar.set(100)

        #if kwargs.get('printstatus', True):
        #    thetime = strftime("%H:%M:%S", localtime())
        #    finalstring = '\n\n%s: Concordancing finished! %d matches.\n' % (thetime, len(conc_df.index))
        #    print(finalstring)

        from interrogation import Concordance
        output = Concordance(conc_df)
        if only_conc:
            output.query = locs
            if save:
                output.save(save)

            if kwargs.get('printstatus', True):
                thetime = strftime("%H:%M:%S", localtime())
                finalstring = '\n\n%s: Concordancing finished! %d results.' % (thetime, len(conc_df))
                print(finalstring)
            signal.signal(signal.SIGINT, original_sigint)
            return output

        #output.query = locs

        #return output 

    ############################################
    #     Get interrogation into DataFrame     #
    ############################################

    if not only_conc:
        if countmode:
            df = Series({k: sum(v) for k, v in sorted(count_results.items())})
            tot = df.sum()
        else:
            the_big_dict = {}
            unique_results = set([item for sublist in list(results.values()) for item in sublist])
            for word in unique_results:
                the_big_dict[word] = [subcorp_result[word] for name, subcorp_result in sorted(results.items(), key=lambda x: x[0])]
            # turn master dict into dataframe, sorted
            df = DataFrame(the_big_dict, index = sorted(results.keys()))

            numentries = len(df.columns)
            tot = df.sum(axis = 1)
            total_total = df.sum().sum()

        ############################################
        # Format, output as Interrogation object   #
        ############################################

        if not countmode:
            if not subcorpora or singlefile:
                if not files_as_subcorpora:
                    if not kwargs.get('df1_always_df'):
                        df = Series(df.ix[0])
                        df.sort_values(ascending = False, inplace = True)
                        tot = df.sum()
                        numentries = len(df.index)
                        total_total = tot

        # sort by total
        if type(df) == pd.core.frame.DataFrame:
            if not df.empty:   
                df.ix['Total-tmp'] = df.sum()
                the_tot = df.ix['Total-tmp']
                df = df[the_tot.argsort()[::-1]]
                df = df.drop('Total-tmp', axis = 0)

        # format final string
        if kwargs.get('printstatus', True):
            thetime = strftime("%H:%M:%S", localtime())
            finalstring = '\n\n%s: Interrogation finished!' % thetime
            if countmode:
                finalstring += ' %d matches.' % tot
            else:
                finalstring += ' %d unique results, %d total occurrences.' % (numentries, total_total)
            print(finalstring)

        if not no_conc:
            interro = Interrogation(results = df, totals = tot, query = locs, concordance = output)
        else:
            interro = Interrogation(results = df, totals = tot, query = locs)

        if save:
            interro.save(save)
        signal.signal(signal.SIGINT, original_sigint)
        return interro
示例#12
0
    def get_stats(sents, **dummy_args):
        """get a bunch of frequencies on interpersonal phenomena"""
        import os
        import re
        from collections import Counter
        statsmode_results = Counter()  
        # first, put the relevant trees into temp file
        if kwargs.get('outname'):
            to_open = 'tmp-%s.txt' % kwargs['outname']
        else:
            to_open = 'tmp.txt'
        with open(to_open, "w") as fo:
            for sent in sents:
                statsmode_results['Sentences'] += 1
                sts = sent.parse_string.rstrip()
                encd = sts.encode('utf-8', errors = 'ignore') + '\n'
                fo.write(encd)
                deps = get_deps(sent, dep_type)
                numpass = len([x for x in deps.links if x.type.endswith('pass')])
                statsmode_results['Passives'] += numpass
                statsmode_results['Tokens'] += len(sent.tokens)
                words = [w.word for w in sent.tokens if w.word.isalnum()]
                statsmode_results['Words'] += len(words)
                statsmode_results['Characters'] += len(''.join(words))

        # count moods via trees          (/\?/ !< __)
        from dictionaries.process_types import processes
        from other import as_regex
        tregex_qs = {'Imperative': r'ROOT < (/(S|SBAR)/ < (VP !< VBD !< VBG !$ NP !$ SBAR < NP !$-- S !$-- VP !$ VP)) !<< (/\?/ !< __) !<<- /-R.B-/ !<<, /(?i)^(-l.b-|hi|hey|hello|oh|wow|thank|thankyou|thanks|welcome)$/',
                     'Open interrogative': r'ROOT < SBARQ <<- (/\?/ !< __)', 
                     'Closed interrogative': r'ROOT ( < (SQ < (NP $+ VP)) << (/\?/ !< __) | < (/(S|SBAR)/ < (VP $+ NP)) <<- (/\?/ !< __))',
                     'Unmodalised declarative': r'ROOT < (S < (/(NP|SBAR|VP)/ $+ (VP !< MD)))',
                     'Modalised declarative': r'ROOT < (S < (/(NP|SBAR|VP)/ $+ (VP < MD)))',
                     'Open class words': r'/^(NN|JJ|VB|RB)/ < __',
                     'Closed class words': r'__ !< __ !> /^(NN|JJ|VB|RB)/',
                     'Clauses': r'/^S/ < __',
                     'Interrogative': r'ROOT << (/\?/ !< __)',
                     'Mental processes': r'VP > /^(S|ROOT)/ <+(VP) (VP <<# /%s/)' % as_regex(processes.mental, boundaries = 'w'),
                     'Verbal processes': r'VP > /^(S|ROOT)/ <+(VP) (VP <<# /%s/)' % as_regex(processes.verbal, boundaries = 'w'),
                     'Relational processes': r'VP > /^(S|ROOT)/ <+(VP) (VP <<# /%s/)' % as_regex(processes.relational, boundaries = 'w')
                     }

        for name, q in sorted(tregex_qs.items()):
            res = tregex_engine(query = q, 
                  options = ['-o', '-C'], 
                  corpus = to_open,  
                  root = root)
            statsmode_results[name] += int(res)
            global numdone
            numdone += 1
            if root:
                root.update()
            else:
                tot_string = str(numdone + 1) + '/' + str(total_files)
                if kwargs.get('outname'):
                    tot_string = '%s: %s' % (kwargs['outname'], tot_string)
                animator(p, numdone, tot_string, **par_args)
            if kwargs.get('note', False):
                kwargs['note'].progvar.set((numdone * 100.0 / total_files / denom) + startnum)
        os.remove(to_open)
        return statsmode_results, []
示例#13
0
def dictmaker(path,
              dictname,
              query='any',
              dictpath='data/dictionaries',
              lemmatise=False,
              just_content_words=False,
              use_dependencies=False):
    """makes a pickle wordlist named dictname in dictpath"""
    import corpkit
    import os
    import pickle
    import re
    import nltk
    from time import localtime, strftime
    from io import StringIO
    import shutil
    from collections import Counter
    from textprogressbar import TextProgressBar
    from process import tregex_engine
    try:
        from IPython.display import display, clear_output
    except ImportError:
        pass
    try:
        get_ipython().getoutput()
    except TypeError:
        have_ipython = True
    except NameError:
        import subprocess
        have_ipython = False

    if lemmatise:
        dictname = dictname + '-lemmatised'
    if not dictname.endswith('.p'):
        dictname = dictname + '.p'

    # allow direct passing of dirs
    path_is_list = False
    one_big_corpus = False
    if type(path) == str:
        sorted_dirs = [
            d for d in os.listdir(path) if os.path.isdir(os.path.join(path, d))
        ]
        # if no subcorpora, just do the dir passed in
        if len(sorted_dirs) == 0:
            one_big_corpus = True
            sorted_dirs = [path]
    elif type(path) == list:
        path_is_list = True
        sorted_dirs = sorted(path)
        if type(sorted_dirs[0]) == int:
            sorted_dirs = [str(d) for d in sorted_dirs]

    try:
        sorted_dirs.sort(key=int)
    except:
        pass
    try:
        if not os.path.exists(dictpath):
            os.makedirs(dictpath)
    except IOError:
        print("Error making " + dictpath + "/ directory.")
    while os.path.isfile(os.path.join(dictpath, dictname)):
        time = strftime("%H:%M:%S", localtime())
        selection = input('\n%s: %s already exists in %s.\n' \
               '          You have the following options:\n\n' \
               '              a) save with a new name\n' \
               '              b) delete %s\n' \
               '              c) exit\n\nYour selection: ' % (time, dictname, dictpath, os.path.join(dictpath, dictname)))
        if 'a' in selection:
            sel = input('\nNew save name: ')
            dictname = sel
            if lemmatise:
                dictname = dictname.replace('-lemmatised.p', '')
                dictname = dictname + '-lemmatised'
            if not dictname.endswith('.p'):
                dictname = dictname + '.p'
        elif 'b' in selection:
            os.remove(os.path.join(dictpath, dictname))
        elif 'c' in selection:
            print('')
            return
        else:
            as_str = str(selection)
            print('          Choice "%s" not recognised.' % selection)

    time = strftime("%H:%M:%S", localtime())
    print('\n%s: Extracting words from files ... \n' % time)

    # all this just to get a list of files and make a better progress bar
    if use_dependencies:
        counts = []
        for d in sorted_dirs:
            if not one_big_corpus:
                subcorpus = os.path.join(path, d)
            else:
                subcorpus = path
            if use_dependencies:
                files = [
                    f for f in os.listdir(subcorpus) if f.endswith('.xml')
                ]
            else:
                files = [f for f in os.listdir(subcorpus)]
            counts.append(len(files))
        num_files = sum(counts)
        c = 0
        p = TextProgressBar(num_files)
    else:
        p = TextProgressBar(len(sorted_dirs))

    def tokener(xmldata):
        import corpkit
        """print word, using good lemmatisation"""
        from bs4 import BeautifulSoup
        import gc
        open_classes = ['N', 'V', 'R', 'J']
        result = []
        just_good_deps = SoupStrainer('tokens')
        soup = BeautifulSoup(xmldata, parse_only=just_good_deps)
        for token in soup.find_all('token'):
            word = token.word.text
            query = re.compile(r'.*')
            if re.search(query, word):
                if lemmatise:
                    word = token.lemma.text
                    if just_content_words:
                        if not token.pos.text[0] in open_classes:
                            continue
                result.append(word)
        # attempt to stop memory problems.
        # not sure if this helps, though:
        soup.decompose()
        soup = None
        data = None
        gc.collect()
        return result

    # translate 'any' query
    if query == 'any':
        if lemmatise:
            query = r'__ <# (__ !< __)'
        else:
            query = r'__ !< __'

    if lemmatise:
        options = ['-o']
    else:
        options = ['-t', '-o']

    if use_dependencies:
        from bs4 import BeautifulSoup, SoupStrainer
        if query == 'any':
            query = r'.*'
        query = re.compile(query)

    allwords = []

    for index, d in enumerate(sorted_dirs):
        if not use_dependencies:
            p.animate(index)
        if not path_is_list:
            if len(sorted_dirs) == 1:
                subcorp = d
            else:
                subcorp = os.path.join(path, d)
        else:
            subcorp = d

        # check query first time through
        if not use_dependencies:
            if index == 0:
                trees_found = tregex_engine(corpus=subcorp,
                                            check_for_trees=True)
                if not trees_found:
                    lemmatise = False
                    dictname = dictname.replace('-lemmatised', '')
            if trees_found:
                results = tregex_engine(corpus=subcorp,
                                        options=options,
                                        query=query,
                                        lemmatise=lemmatise,
                                        just_content_words=just_content_words)

                for result in results:
                    allwords.append(result)

        elif use_dependencies:
            regex_nonword_filter = re.compile("[A-Za-z]")
            results = []
            fs = [os.path.join(subcorp, f) for f in os.listdir(subcorp)]
            for f in fs:
                p.animate(c, str(c) + '/' + str(num_files))
                c += 1
                data = open(f).read()
                result_from_a_file = tokener(data)
                for w in result_from_a_file:
                    if re.search(regex_nonword_filter, w):
                        allwords.append(w.lower())

        if not use_dependencies:
            if not trees_found:
                for f in os.listdir(subcorp):
                    raw = str(open(os.path.join(subcorp, f)).read(),
                              'utf-8',
                              errors='ignore')
                    sent_tokenizer = nltk.data.load(
                        'tokenizers/punkt/english.pickle')
                    sents = sent_tokenizer.tokenize(raw)
                    tokenized_sents = [nltk.word_tokenize(i) for i in sents]
                    for sent in tokenized_sents:
                        for w in sent:
                            allwords.append(w.lower())

    #100%
    p.animate(len(sorted_dirs))

    # make a dict
    dictionary = Counter(allwords)

    with open(os.path.join(dictpath, dictname), 'wb') as handle:
        pickle.dump(dictionary, handle)
    time = strftime("%H:%M:%S", localtime())
    print('\n\n' + time + ': Done! ' + dictname + ' created in ' + dictpath +
          '/')