示例#1
0
def make_adaboost_tree_fit_pipeline():
    items = []
    items.append(
        ('features', process_data.make_predictor_pipeline(do_one_hot=True)))
    items.append(('model',
                  sklearn.ensemble.AdaBoostClassifier(
                      sklearn.tree.DecisionTreeClassifier())))
    return sklearn.pipeline.Pipeline(items)
示例#2
0
def make_bagging_tree_fit_pipeline():
    items = []
    items.append(
        ("features", process_data.make_predictor_pipeline(do_one_hot=True)))
    items.append(("model",
                  sklearn.ensemble.BaggingClassifier(
                      sklearn.tree.DecisionTreeClassifier())))
    return sklearn.pipeline.Pipeline(items)
def main(argv):
    if len(argv) > 1:
        filename = argv[1]
    else:
        filename = 'a.csv'

    if os.path.exists(filename):
        basename, ext = filename.split('.')
        data = process_data.get_data(filename)

        predictor_pipeline = process_data.make_predictor_pipeline(
            do_one_hot=False)
        label_pipeline = process_data.make_label_pipeline()

        predictors_processed = predictor_pipeline.fit_transform(data)
        labels_processed = label_pipeline.fit_transform(data)

        display_data(predictors_processed, labels_processed, basename)

    else:
        print(filename + " doesn't exist.")

    return
示例#4
0
def make_svm_fit_pipeline():
    items = []
    items.append(("features", process_data.make_predictor_pipeline(do_one_hot=True)))
    items.append(("model", sklearn.svm.SVC()))
    return sklearn.pipeline.Pipeline(items)