import sys import torch from torch.backends import cudnn from processor.processor import Processor torch.backends.cudnn.deterministic = False cudnn.benchmark = True # https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936 torch.cuda.empty_cache() # release cache if __name__ == '__main__': proc = Processor(sys.argv[1:]) proc.start()
parser.add_argument('--num_of_vertices', type=int, default=358, help='The number of vertices') parser.add_argument('--gen_config_args', type=dict, default=dict(), help='The config of data generate') return parser if __name__ == '__main__': parser = get_parser() # load arg form config file p = parser.parse_args() if p.config is not None: with open(p.config, 'r') as f: default_arg = yaml.load(f) key = vars(p).keys() for k in default_arg.keys(): if k not in key: print('WRONG ARG: {}'.format(k)) assert (k in key) parser.set_defaults(**default_arg) arg = parser.parse_args() init_seed(0) processor = Processor(arg) processor.start()