def test_buffered_matrix(self):
     buf = BufferedMatrix()
     omat = buf.matrix()
     self.assertEquals(len(buf), 0)
     self.assertEquals(buf.allocated_size(), 0)
     o = 0
     
     for i in range(10,100,10):
         mat = buf.resize(i)
         self.assertEquals(len(buf), i)
         self.assertIs(mat.base,buf._base)
         if omat is not None:
             self.assertTrue((omat==mat[0:omat.shape[0],0:omat.shape[1]]).all())
         mat[:,:] = np.random.rand(i,i)
         omat = mat
示例#2
0
 def __init__(self, metric="euclidean", columns=None, n_jobs=1, **kwds):
     self._add_slots(
         kwds,
         "input_descriptors",
         [SlotDescriptor("df", type=pd.DataFrame), SlotDescriptor("array", required=False)],
     )
     self._add_slots(kwds, "output_descriptors", [SlotDescriptor("dist", type=np.ndarray, required=False)])
     super(PairwiseDistances, self).__init__(dataframe_slot="distance", **kwds)
     self.default_step_size = kwds.get("step_Size", 100)  # initial guess
     self.columns = columns
     self._metric = metric
     self._n_jobs = n_jobs
     self._last_index = None
     if metric not in _VALID_METRICS and not callable(metric) and metric != "precomputed":
         raise ProgressiveError("Unknown distance %s", metric)
     self._buf = BufferedMatrix()
示例#3
0
class PairwiseDistances(Module):
    def __init__(self, metric="euclidean", columns=None, n_jobs=1, **kwds):
        self._add_slots(
            kwds,
            "input_descriptors",
            [SlotDescriptor("df", type=pd.DataFrame), SlotDescriptor("array", required=False)],
        )
        self._add_slots(kwds, "output_descriptors", [SlotDescriptor("dist", type=np.ndarray, required=False)])
        super(PairwiseDistances, self).__init__(dataframe_slot="distance", **kwds)
        self.default_step_size = kwds.get("step_Size", 100)  # initial guess
        self.columns = columns
        self._metric = metric
        self._n_jobs = n_jobs
        self._last_index = None
        if metric not in _VALID_METRICS and not callable(metric) and metric != "precomputed":
            raise ProgressiveError("Unknown distance %s", metric)
        self._buf = BufferedMatrix()

    def is_ready(self):
        if self.get_input_slot("df").has_created():
            return True
        return super(PairwiseDistances, self).is_ready()

    def dist(self):
        return self._buf.matrix()

    def get_data(self, name):
        if name == "dist":
            return self.dist()
        return super(PairwiseDistances, self).get_data(name)

    @synchronized
    def run_step(self, run_number, step_size, howlong):
        dfslot = self.get_input_slot("df")
        df = dfslot.data()
        dfslot.update(run_number)
        if dfslot.has_updated() or dfslot.has_deleted():
            dfslot.reset()
            logger.info("Reseting history because of changes in the input df")
            dfslot.update(run_number, df)
            # TODO: be smarter with changed values

        m = step_size

        indices = dfslot.next_created(m)
        m = indices_len(indices)

        i = None
        j = None
        Si = self._buf.matrix()

        arrayslot = self.get_input_slot("array")
        if arrayslot is not None and arrayslot.data() is not None:
            array = arrayslot.data()
            logger.debug("Using array instead of DataFrame columns")
            if Si is not None:
                i = array[self._last_index]
            j = array[indices]
        if j is None:
            if self.columns is None:
                self.columns = df.columns.delete(np.where(df.columns == Module.UPDATE_COLUMN))
            elif not isinstance(self.columns, pd.Index):
                self.columns = pd.Index(self.columns)
            rows = df[self.columns]
            if Si is not None:
                i = rows.loc[self._last_index]
                assert len(i) == len(self._last_index)
            j = rows.loc[fix_loc(indices)]
            assert len(j) == indices_len(indices)

        Sj = pairwise_distances(j, metric=self._metric, n_jobs=self._n_jobs)
        if Si is None:
            mat = self._buf.resize(Sj.shape[0])
            mat[:, :] = Sj
            self._last_index = dfslot.last_index[indices]
        else:
            Sij = pairwise_distances(i, j, metric=self._metric, n_jobs=self._n_jobs)
            n0 = i.shape[0]
            n1 = n0 + j.shape[0]
            mat = self._buf.resize(n1)
            mat[0:n0, n0:n1] = Sij
            mat[n0:n1, 0:n0] = Sij.T
            mat[n0:n1, n0:n1] = Sj
            self._last_index = self._last_index.append(df.index[indices])
            # truth = pairwise_distances(array[0:n1], metric=self._metric)
            # import pdb
            # pdb.set_trace()
            # assert np.allclose(mat,truth)
        return self._return_run_step(dfslot.next_state(), steps_run=m)