示例#1
0
文件: test_3.py 项目: poine/proj_emen
def test_heuristic_3(drone, targets):
    _start = time.perf_counter()
    drones, targetss = pm.search_exhaustive(drone, targets, keep_all=True)
    _end = time.perf_counter()
    print(f'Exhaustive search took {_end-_start:.1f} s')
    _start = time.perf_counter()
    test_drone, test_target = search_heuristic_closest(drone, targets)
    _foo, _bar = pm.search_exhaustive_with_threshold(
        drone, targets, test_drone.flight_duration())
    _end = time.perf_counter()
    print(f'Exhaustive thresholded search took {_end-_start:.1f} s')
示例#2
0
文件: test_3.py 项目: poine/proj_emen
def plot_histogram(fig, ax, drone, targets, title):
    drones, targetss = pm.search_exhaustive(drone, targets, keep_all=True)
    test_drone, test_target = search_heuristic_closest(drone, targets)
    _cs = np.array([_d.flight_duration() for _d in drones])
    _ib, _iw = np.argmin(_cs), np.argmax(_cs)
    _cb = drones[_ib].flight_duration()
    _ct = test_drone.flight_duration()
    print(f'optimal {_cb:.1f} s heuristic {_ct:.1f} s')
    _n, _b, _p = ax.hist(_cs, bins=30)
    ax.plot([_ct, _ct], [0, 300], label=f'heuristic ({_ct:.2f} s)')
    ax.plot([_cb, _cb], [0, 300], label=f'optimal ({_cb:.2f} s)')
    pmu.decorate(ax, title, 'time in s', 'nb sequences', True)
示例#3
0
文件: test_3.py 项目: poine/proj_emen
def plot_cpu_time():
    ntargs, dts, dts2 = [2, 3, 4, 5, 6, 7, 8], [], []
    for ntarg in ntargs:
        drone, targets = pmu.make_random_scenario(ntarg=ntarg,
                                                  dp0=(0, 0),
                                                  dv=15)
        _start = time.perf_counter()
        best_drone, best_seq = search_exhaustive_threshold(drone, targets)
        _end = time.perf_counter()
        dts2.append(_end - _start)
        print(f'{ntarg} targets thresh-> {dts2[-1]:.1f} s')
        _start = time.perf_counter()
        best_drone, best_seq = pm.search_exhaustive(drone, targets)
        _end = time.perf_counter()
        dts.append(_end - _start)
        print(f'{ntarg} targets -> {dts[-1]:.1f} s')
    plt.plot(ntargs, dts, '--o', label='Exhaustive search')
    plt.plot(ntargs, dts2, '--o', label='Exhaustive search with threshold')
    pmu.decorate(plt.gca(), 'cpu time', 'number of targets', 'time in s', True)
    plt.savefig('../docs/images/ex_search_time_vs_size_2.png')
示例#4
0
文件: test_3.py 项目: poine/proj_emen
def anim_scens(show_opt=True, show_heu=True, show_hist=True, _fs=3.84):
    _scens = [make_or_load_scenario(_i) for _i in [0, 1, 2, 3]]
    #_scens = [make_or_load_scenario(_i) for _i in [4, 5, 6, 7]]
    #_scens = [make_or_load_scenario(_i) for _i in [8, 9]]
    #_scens = [make_or_load_scenario(_i) for _i in [10, 11]]
    _sols = [_3 for _1, _2, _3 in _scens]
    drones, targets = [], []
    if show_opt:
        for _d, _t, _s in _scens:
            best_dur, best_seq = pmu.sol_by_name(_s, 'optimal')
            if best_seq is not None:
                best_drone, best_dur = pm.intercept_sequence_copy(_d, best_seq)
            else:
                best_drone, best_seq = pm.search_exhaustive(_d, _t)
            drones.append(best_drone), targets.append(best_seq)
    if show_heu:
        for _d, _t, _s in _scens:
            test_dur, test_seq = pmu.sol_by_name(_s, 'heuristic')
            if test_seq is not None:
                test_drone, test_dur = pm.intercept_sequence_copy(_d, test_seq)
            else:
                test_drone, test_seq = search_heuristic_closest(_d, _t)
            drones.append(test_drone), targets.append(test_seq)

    _nr, _nc = np.sum([show_opt, show_heu, show_hist]), len(_scens)
    titles = [f'scenario {_i}_opt' for _i in range(_nc)
              ] + [f'scenario {_i}_heur' for _i in range(_nc)]
    fig = plt.figure(tight_layout=True, figsize=[_fs * _nc, _fs * _nr])
    axes = fig.subplots(_nr, _nc)  #, sharex=True)
    if show_hist:
        _titles = [f'scenario {_i} histogram' for _i in range(_nc)]
        for (_d, _t, _s), _title, _ax in zip(_scens, _titles, axes[2, :]):
            plot_histogram(fig, _ax, _d, _t, _title)

    return pma.animate_multi(fig,
                             axes.flatten(),
                             drones,
                             targets,
                             titles,
                             xlim=(-150, 150),
                             ylim=(-150, 150))
示例#5
0
文件: test_3.py 项目: poine/proj_emen
def compare_with_optimal(scen):
    try:
        name, opt_dur, opt_seq = scen.solution_by_name('optimal')
        opt_drone, _ = pm.intercept_sequence_copy(scen.drone, opt_seq)
    except KeyError:
        opt_drone, opt_seq = pm.search_exhaustive(scen.drone, scen.targets)
        opt_dur = opt_drone.flight_duration()

    try:
        name, heur_dur, heur_seq = scen.solution_by_name('heuristic')
        heur_drone, _ = pm.intercept_sequence_copy(scen.drone, heur_seq)
    except KeyError:
        heur_drone, heur_seq = pm_t3.search_heuristic_closest(
            scen.drone, scen.targets)
        heur_dur = heur_drone.flight_duration()

    print(f'optimal {opt_dur:.1f} s heuristic {heur_dur:.1f} s')

    fig = plt.figure(tight_layout=True, figsize=[10.24, 5.12])
    ax1, ax2 = fig.subplots(1, 2, sharex=True)
    return pma.animate_multi(fig, [ax1, ax2], [opt_drone, heur_drone],
                             [opt_seq, heur_seq], ['Optimal', 'Heuristic'])