def load_data(behavior, covariates=True): behavior_data, conn_data = pu.load_data_full_subjects() if behavior == 'TQ_high_low': tq_data = behavior_data['distress_TQ'].values high_low_thresholds = [0, 46, 84] tq_hl = np.digitize(tq_data, bins=high_low_thresholds, right=True) target_as_str = ['TQ_High' if t > 1 else 'TQ_low' for t in tq_hl] elif behavior == 'TQ_Grade': tq_data = behavior_data['distress_TQ'].values grade_thresholds = [0, 30, 46, 59, 84] tq_grade = np.digitize(tq_data, bins=grade_thresholds, right=True) target_as_str = ['Grade %d' % t for t in tq_grade] else: target_as_float = behavior_data[behavior].values.astype(float) target_as_str = pu.convert_tin_to_str(target_as_float, behavior) target_data = pd.DataFrame(target_as_str, index=conn_data.index) if not covariates: ml_data = conn_data.astype(float) else: categorical_variables = [ 'smoking', 'deanxit_antidepressants', 'rivotril_antianxiety', 'sex' ] categorical_data = behavior_data[categorical_variables] dummy_coded_categorical = pu.dummy_code_binary(categorical_data) covariate_data = pd.concat( [behavior_data['age'], dummy_coded_categorical], axis=1) ml_data = pd.concat([conn_data, covariate_data], axis=1) return ml_data, target_data
def test_gridsearch(): def gridsearch_pipe(cv=None): from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.feature_selection import SelectFromModel from sklearn.ensemble import ExtraTreesClassifier from sklearn.model_selection import GridSearchCV from sklearn.svm import SVC kernel_range = ('linear', 'rbf') # , 'poly'] c_range = [1, 10, 100] # np.arange(start=1, stop=100, step=10, dtype=int) # gamma_range = np.arange(.01, 1, .01) param_grid = { 'C': c_range } # , 'gamma': gamma_range} # , 'kernel': kernel_range} pipe = Pipeline([ ('preprocess_data', StandardScaler()), ('feature_selection', SelectFromModel(ExtraTreesClassifier(random_state=13), threshold="2*mean")), ('grid', GridSearchCV(SVC(kernel='rbf'), param_grid=param_grid, cv=cv, scoring='balanced_accuracy')) ]) return pipe print('%s: Loading data' % pu.ctime()) behavior_data, conn_data = pu.load_data_full_subjects() ml_data_without_covariates = conn_data.astype(float) side_data = pu.convert_tin_to_str( behavior_data['tinnitus_side'].values.astype(float), 'tinnitus_side') resampler = SMOTE(sampling_strategy='not majority', random_state=seed) x_res, y_res = resampler.fit_resample(ml_data_without_covariates, side_data) n_splits = 10 skf = model_selection.StratifiedKFold(n_splits=n_splits, random_state=seed) skf.get_n_splits(x_res, y_res) pipe = gridsearch_pipe(cv=skf).fit(x_res, y_res) gridsearch = pipe[-1] best_params = gridsearch.best_params_ print(best_params) best_score = gridsearch.best_score_ print(best_score) print('%s: Finished' % pu.ctime())
def lars(): behavior_data, conn_data = pu.load_data_full_subjects() conn_data.astype(float) categorical_variables = ['smoking', 'deanxit_antidepressants', 'rivotril_antianxiety', 'sex'] categorical_data = behavior_data[categorical_variables] dummy_coded_categorical = pu.dummy_code_binary(categorical_data) covariate_data = pd.concat([behavior_data['age'], dummy_coded_categorical], axis=1) ml_data = pd.concat([conn_data, covariate_data], axis=1) target = behavior_data['distress_TQ'].values.astype(float) feature_names = list(ml_data) continuous_features = [f for f in feature_names if 'categorical' not in f] continuous_indices = [ml_data.columns.get_loc(cont) for cont in continuous_features] categorical_features = [f for f in feature_names if 'categorical' in f] categorical_indices = [ml_data.columns.get_loc(cat) for cat in categorical_features] ml_continuous = ml_data.values[:, continuous_indices] ml_categorical = ml_data.values[:, categorical_indices] # Standardization for continuous data preproc = preprocessing.StandardScaler().fit(ml_continuous) ml_z = preproc.transform(ml_continuous) # Variance threshold for categorical data varthresh = feature_selection.VarianceThreshold(threshold=0).fit(ml_categorical) ml_v = varthresh.transform(ml_categorical) ml_preprocessed = np.hstack((ml_z, ml_v)) # Feature selection with extra trees clf = ensemble.ExtraTreesRegressor() model = feature_selection.SelectFromModel(clf, threshold="2*mean") # Transform train and test data with feature selection model ml_cleaned = model.fit_transform(ml_preprocessed, target) feature_indices = model.get_support(indices=True) cleaned_features = [feature_names[i] for i in feature_indices] lars_classifier = linear_model.LarsCV(cv=3, normalize=False, fit_intercept=False) lars_classifier.fit(ml_cleaned, target) predicted = lars_classifier.predict(ml_cleaned) r2 = lars_classifier.score(ml_cleaned, target) exp_var = metrics.explained_variance_score(target, predicted) max_err = metrics.max_error(target, predicted) mae = metrics.mean_absolute_error(target, predicted) mse = metrics.mean_squared_error(target, predicted) print(r2)
def get_variable_data(): def _count_data(data_to_count, vartype): data_df = pd.DataFrame(data_to_count, columns=[vartype]) count_df = data_df[vartype].value_counts() return count_df output_dir = './../data/eeg_classification' if not isdir(output_dir): mkdir(output_dir) behavior_data, conn_data = pu.load_data_full_subjects() side_data = pu.convert_tin_to_str( behavior_data['tinnitus_side'].values.astype(float), 'tinnitus_side') side_count = _count_data(side_data, 'Side') type_data = pu.convert_tin_to_str( behavior_data['tinnitus_type'].values.astype(float), 'tinnitus_type') type_count = _count_data(type_data, 'Type') tq_data = behavior_data['distress_TQ'].values high_low_thresholds = [0, 46, 84] binned_high_low = np.digitize(tq_data, bins=high_low_thresholds, right=True) tq_high_low = ['Low' if t < 2 else 'High' for t in binned_high_low] hl_count = _count_data(tq_high_low, 'TQ (High/Low)') grade_thresholds = [0, 30, 46, 59, 84] binned_grade = np.digitize(tq_data, bins=grade_thresholds, right=True) tq_grade = ['Grade_%d' % t for t in binned_grade] grade_count = _count_data(tq_grade, 'TQ (Grade)') gender = behavior_data['sex'] gender_str = ['Male' if g > 0 else 'Female' for g in gender.values] gender_count = _count_data(gender_str, 'Gender') # categorical_variables = ['smoking', 'deanxit_antidepressants', 'rivotril_antianxiety', 'sex'] # categorical_data = behavior_data[categorical_variables] output = { 'side': side_count, 'type': type_count, 'tq_high_low': hl_count, 'tq_grade': grade_count, 'gender': gender_count } pu.save_xls(output, join(output_dir, 'tin_variables_classcount.xlsx'))
def plot_age_historgram(output_dir=None): behavior_data, conn_data = pu.load_data_full_subjects() age = behavior_data['age'] sns.set_style('darkgrid') fig, ax = plt.subplots(figsize=(8, 6)) sns.distplot(age.values, kde=False, ax=ax, hist_kws={ "alpha": .75, "color": 'b' }) ax.set_xlabel('Age') ax.set_ylabel('Frequency') if output_dir is None: plt.show() else: fig.savefig(join(output_dir, 'age_hist.png'))
if outdir is not None: score_df.to_excel( os.path.join(outdir, '%s_performance_measures.xlsx' % target_type)) # coef_df.to_excel(os.path.join(outdir, '%s_feature_coefficients.xlsx' % target_type)) if __name__ == "__main__": import logging logging.basicConfig(level=logging.INFO) output_dir = './../data/eeg_regression/extra_trees/' if not os.path.isdir(output_dir): os.mkdir(output_dir) behavior_data, conn_data = pu.load_data_full_subjects() conn_data.astype(float) categorical_variables = [ 'smoking', 'deanxit_antidepressants', 'rivotril_antianxiety', 'sex' ] categorical_data = behavior_data[categorical_variables] dummy_coded_categorical = pu.dummy_code_binary(categorical_data) covariate_data = pd.concat([behavior_data['age'], dummy_coded_categorical], axis=1) ml_data = pd.concat([conn_data, covariate_data], axis=1) target = behavior_data['distress_TQ'].values.astype(float) targets = [ 'loudness_VAS', 'distress_TQ', 'distress_VAS', 'anxiety_score',
def classification_main(covariates=True, n_iters=0): output_dir = './../data/eeg_classification' if not isdir(output_dir): mkdir(output_dir) print('%s: Loading data' % pu.ctime()) behavior_data, conn_data = pu.load_data_full_subjects() ml_data_without_covariates = conn_data.astype(float) categorical_variables = [ 'smoking', 'deanxit_antidepressants', 'rivotril_antianxiety', 'sex' ] categorical_data = behavior_data[categorical_variables] dummy_coded_categorical = pu.dummy_code_binary(categorical_data) covariate_data = pd.concat([behavior_data['age'], dummy_coded_categorical], axis=1) ml_data_with_covariates = pd.concat([conn_data, covariate_data], axis=1) models = ['svm', 'extra_trees', 'knn'] resample_methods = ['no_resample', 'ROS', 'SMOTE', 'RUS'] targets = {} side_data = pu.convert_tin_to_str( behavior_data['tinnitus_side'].values.astype(float), 'tinnitus_side') targets['tin_side'] = side_data type_data = pu.convert_tin_to_str( behavior_data['tinnitus_type'].values.astype(float), 'tinnitus_type') targets['tin_type'] = type_data tq_data = behavior_data['distress_TQ'].values high_low_thresholds = [0, 46, 84] tq_high_low = np.digitize(tq_data, bins=high_low_thresholds, right=True) targets['TQ_high_low'] = tq_high_low grade_thresholds = [0, 30, 46, 59, 84] binned_target = np.digitize(tq_data, bins=grade_thresholds, right=True) tq_grade = ['Grade_%d' % t for t in binned_target] targets['TQ_grade'] = tq_grade # hads_thresholds = [8, 11, 21] # 0-7 (normal); 8-10 (borderline); 11-21 (abnormal) # anx_binned = np.digitize(behavior_data['anxiety_score'].values.astype(float), bins=hads_thresholds, right=True) # dep_binned = np.digitize(behavior_data['depression_score'].values.astype(float), bins=hads_thresholds, right=True) # targets['hads_OVR'] = convert_hads_to_single_label(np.vstack((anx_binned, dep_binned)).T) if covariates: ml_data = ml_data_with_covariates cv_check = 'with_covariates' else: ml_data = ml_data_without_covariates cv_check = 'without_covariates' if n_iters != 0: for model in models: for res in resample_methods: for target in targets: target_data = targets[target] perm_scores = {} model_outdir = join( output_dir, '%s %s %s %s' % (target, model, cv_check, res)) if not isdir(model_outdir): mkdir(model_outdir) for n in range(n_iters): perm_target = shuffle(target_data) scores = eeg_classify(ml_data, perm_target, target_type=target, model=model, resample=res) perm_scores['Iter%05d' % n] = scores with open(join(model_outdir, 'perm_scores.pkl'), 'wb') as file: pkl.dump(perm_scores, file) else: for target in targets: target_data = targets[target] for model in models: for res in resample_methods: eeg_classify(ml_data, target_data, target_type=target, model=model, outdir=output_dir, resample=res) print('%s: Finished' % pu.ctime())