def project_year(model, model_dir, what, scenario, year): print("projecting %s for %d using %s" % (what, year, scenario)) models = select_models(model, model_dir) # Read Sam's abundance model (forested and non-forested) modf = modelr.load(models[0]) intercept_f = modf.intercept predicts.predictify(modf) modn = modelr.load(models[1]) intercept_n = modn.intercept predicts.predictify(modn) # Open forested/non-forested mask layer fstnf = rasterio.open(utils.luh2_static('fstnf')) # Import standard PREDICTS rasters rastersf = predicts.rasterset('luh2', scenario, year, 'f') rsf = RasterSet(rastersf, mask=fstnf, maskval=0.0) rastersn = predicts.rasterset('luh2', scenario, year, 'n') rsn = RasterSet(rastersn, mask=fstnf, maskval=1.0) #rsn = RasterSet(rastersn) if what == 'bii': vname = 'bii' rsf[vname] = SimpleExpr( vname, 'exp(%s) / exp(%f)' % (modf.output, intercept_f)) rsn[vname] = SimpleExpr( vname, 'exp(%s) / exp(%f)' % (modn.output, intercept_n)) rsf[modf.output] = modf rsn[modn.output] = modn else: vname = modf.output assert modf.output == modn.output rsf[vname] = modf rsn[vname] = modn if what not in rsf: print('%s not in rasterset' % what) print(', '.join(sorted(rsf.keys()))) sys.exit(1) stime = time.time() datan, meta = rsn.eval(what, quiet=False) dataf, _ = rsf.eval(what, quiet=True) data_vals = dataf.filled(0) + datan.filled(0) data = data_vals.view(ma.MaskedArray) data.mask = np.logical_and(dataf.mask, datan.mask) #data = datan etime = time.time() print("executed in %6.2fs" % (etime - stime)) oname = '%s/luh2/%s-%s-%d.tif' % (utils.outdir(), scenario, what, year) with rasterio.open(oname, 'w', **meta) as dst: dst.write(data.filled(meta['nodata']), indexes=1) if None: fig = plt.figure(figsize=(8, 6)) ax = plt.gca() show(data, cmap='viridis', ax=ax) plt.savefig('luh2-%s-%d.png' % (scenario, year)) return
def project(year): print("projecting %d" % year) # Open the mask shape file shp_file = 'c:/data/from-adriana/tropicalforests.shp' shapes = fiona.open(shp_file) # Read Adriana's abundance model (mainland) mod = modelr.load('../tropical-bii/simplifiedAbundanceModel.rds') predicts.predictify(mod) # Import standard PREDICTS rasters rasters = predicts.rasterset('1km', '', year, 'medium') rasters['primary_lightintense'] = SimpleExpr( 'primary_lightintense', 'primary_light + primary_intense') rasters['cropland_lightintense'] = SimpleExpr( 'cropland_lightintense', 'cropland_light + cropland_intense') rasters['pasture_lightintense'] = SimpleExpr( 'pasture_lightintense', 'pasture_light + pasture_intense') rasters['rd_dist'] = Raster('rd_dist', '/out/1km/roads-adrid.tif') rasters['hpd'] = Raster( 'hpd', '/vsizip//data/from-adriana/HPD01to12.zip/yr%d/hdr.adf' % year) rs = RasterSet(rasters, shapes=shapes, crop=True, all_touched=True) what = 'LogAbund' rs[what] = mod stime = time.time() rs.write(what, utils.outfn('1km', 'adrid-%d.tif' % year)) etime = time.time() print("executed in %6.2fs" % (etime - stime))
def project_year(model, model_dir, what, scenario, year): print("projecting %s for %d using %s" % (what, year, scenario)) models = select_models(model, model_dir) # Read Sam's abundance model (forested and non-forested) mod = modelr.load(models[0]) predicts.predictify(mod) # Import standard PREDICTS rasters by_age = 'young_secondary' in mod.syms print('by_age: %s' % str(by_age)) rasters = predicts.rasterset('luh5', scenario, year, by_age) rs = RasterSet(rasters) if what == 'bii': vname = 'bii' rs[vname] = SimpleExpr(vname, '%s / %f' % (mod.output, intercept)) else: vname = mod.output rs[vname] = mod if what not in rs: print('%s not in rasterset' % what) print(', '.join(sorted(rs.keys()))) sys.exit(1) stime = time.time() data, meta = rs.eval(what, quiet=False) etime = time.time() print("executed in %6.2fs" % (etime - stime)) oname = os.path.join(os.environ['OUTDIR'], 'luh5/%s-%s-%d.tif' % (scenario, what, year)) #hpd, _ = rs.eval('hpd', quiet=False) #hpd_max, meta2 = rs.eval('hpd_max', quiet=False) with rasterio.open(oname, 'w', **meta) as dst: #bb = dst.bounds #ul = map(int, ~meta2['affine'] * (bb[0], bb[3])) #lr = map(int, ~meta2['affine'] * (bb[2], bb[1])) #cap = ma.where(hpd > hpd_max[ul[1]:lr[1], ul[0]:lr[0]], True, False) #show(hpd, norm=colors.PowerNorm(gamma=0.2)) #show(cap * 1) #data.mask = np.logical_or(data.mask, cap) dst.write(data.filled(meta['nodata']), indexes=1) if None: fig = plt.figure(figsize=(8, 6)) ax = plt.gca() show(data, cmap='viridis', ax=ax) plt.savefig('luh2-%s-%d.png' % (scenario, year)) return
def project_year(model, model_dir, scenario, year): """Run a projection for a single year. Can be called in parallel when projecting a range of years. """ print("projecting %s for %d using %s" % (model, year, scenario)) # Import standard PREDICTS rasters rasters = predicts.rasterset('luh2', scenario, year) rs = RasterSet(rasters) what, model = select_model(model, model_dir) # Read Sam's models if model: mod = modelr.load(model) predicts.predictify(mod) rs[mod.output] = mod if what in ('CompSimAb', 'CompSimSR', 'Abundance', 'Richness'): if what in ('CompSimAb', 'CompSimSR'): expr = '(inv_logit(%s) - 0.01) / (inv_logit(%f) - 0.01)' else: expr = '(exp(%s) / exp(%f))' rs[what] = SimpleExpr(what, expr % (mod.output, mod.intercept)) if what not in rs: print('%s not in rasterset' % what) print(', '.join(sorted(rs.keys()))) sys.exit(1) stime = time.time() data, meta = rs.eval(what, quiet=True) etime = time.time() print("executed in %6.2fs" % (etime - stime)) oname = '%s/luh2/%s-%s-%04d.tif' % (utils.outdir(), scenario, what, year) with rasterio.open(oname, 'w', **meta) as dst: dst.write(data.filled(meta['nodata']), indexes=1) if None: fig = plt.figure(figsize=(8, 6)) show(data, cmap='viridis', ax=plt.gca()) fig.savefig('luh2-%s-%d.png' % (scenario, year)) return
def plot(model, title, save, adjust): """Plot response curve of CS model versus HPD.""" mod = modelr.load(model) df = pd.DataFrame(columns=tuple(luh2.LU.keys())) for col in df.columns: s = pd.Series( mod.partial({ 'LogHPD_s2': np.linspace(0, 11, 13), 'LogHPD_diff': np.linspace(0, -11, 13), col: np.full((13), 1) })) df[col] = (inv_logit(s) - adjust) / (1 - 2 * adjust) df.plot() ax = plt.gca() ax.set_title(title) ax.set_xlabel('log(HPD + 1)') ax.set_ylabel('CompSim') if save: plt.savefig(save, transparent=True, bbox_inches="tight", pad_inches=0) plt.show()
import projections.predicts as predicts import projections.r2py.modelr as modelr import projections.utils as utils scenarios = ['historical', 'ssp1_rcp2.6_image', 'ssp5_rcp8.5_remind-magpie'] models = ['ab_model.rds', 'sr_model.rds'] for model in models: if model == 'ab_model.rds': what = "abundance" else: what = "sprich" # Read in the model mod = modelr.load('D:/victoria_projections/' + model) predicts.predictify(mod) for scenario in scenarios: if scenario == 'historical': years = range(1970, 2015) hpdtrend = 'wpp' else: years = range(2015, 2101) hpdtrend = 'medium' for year in years: rasters = predicts.rasterset('luh2',
args = parser.parse_args() if args.mainland: ISLMAIN = 1 mask_file = os.path.join(utils.data_root(), '1km/mainland-from-igor-edited-at.tif') else: ISLMAIN = 0 mask_file = os.path.join(utils.data_root(), '1km/islands-from-igor-edited-at.tif') # Open the mask raster file (Mainlands) mask_ds = rasterio.open(mask_file) # Read Katia's abundance model mod = modelr.load('/home/vagrant/katia/models/best_model_abund.rds') predicts.predictify(mod) # Import standard PREDICTS rasters rasters = predicts.rasterset('1km', 'medium', year=2005) # create an ISL_MAINL raster # set it to Mainlands this time round (set Mainlands to 1 and Islands to 0) rasters['ISL_MAINLMAINLAND'] = SimpleExpr('ISL_MAINLMAINLAND', ISLMAIN) # specify the plantation forest maps as 0 # not sure why it's plantations_pri rather than plantation, but hey ho rasters['plantation_pri'] = SimpleExpr('plantation_pri', 0) rasters['plantation_pri_minimal'] = SimpleExpr('plantation_pri_minimal', 0) rasters['plantation_pri_light'] = SimpleExpr('plantation_pri_light', 0) rasters['plantation_pri_intense'] = SimpleExpr('plantation_pri_intense', 0)
import rasterio from rasterio.plot import show, show_hist from projections.rasterset import RasterSet, Raster from projections.simpleexpr import SimpleExpr import projections.predicts as predicts import projections.r2py.modelr as modelr import projections.utils as utils # Open the mask raster file mask_file = os.path.join(utils.data_root(), '1km/mainland-from-igor-edited.tif') mask_ds = rasterio.open(mask_file) # Richness compositional similarity model with updated PriMin-Urb coefficient mod = modelr.load('/home/vagrant/katia/models/updated_compsim_rich.rds') predicts.predictify(mod) # Import standard PREDICTS rasters rasters = predicts.rasterset('1km', 'medium', year=2005) # create an ISL_MAINL raster # set it to Mainlands this time round (set Mainlands to 1 and Islands to 0) rasters['ISL_MAINMAINLAND'] = SimpleExpr('ISL_MAINMAINLAND', '2') rasters['ISL_MAINISLAND'] = SimpleExpr('ISL_MAINISLAND', '0') rasters['adjGeogDist'] = SimpleExpr('adjGeogDist', '0') rasters['cubeRtEnvDist'] = SimpleExpr('cubeRtEnvDist', '0') # set up the rasterset, cropping to mainlands rs = RasterSet(rasters, mask=mask_ds, maskval=0, crop=True)
import time from rasterio.plot import show import matplotlib.pyplot as plt from projections.rasterset import RasterSet, Raster import projections.predicts as predicts import projections.r2py.modelr as modelr # Open the mask shape file shp_file = os.path.join(os.environ['DATA_ROOT'], 'from-adriana/tropicalforests.shp') shapes = fiona.open(shp_file) # Read Adriana's abundance model (mainland) mod = modelr.load(os.path.join(os.environ['MODEL_DIR'], 'ab-model.rds')) predicts.predictify(mod) # Import standard PREDICTS rasters rasters = predicts.rasterset('luh5', 'historical', 1990, True) rs = RasterSet(rasters, shapes=shapes, all_touched=True) what = mod.output rs[mod.output] = mod stime = time.time() data1, meta_data1 = rs.eval(what) etime = time.time() print("executed in %6.2fs" % (etime - stime)) show(data1) ##
import projections.utils as utils RD_DIST_MIN = 0 RD_DIST_MAX = 195274.3 HPD_MIN = 0 HPD_MAX = 22490 CLIP = True # False # Open the mask raster file (Mainlands) mask_file = os.path.join(utils.data_root(), '1km/mainland-from-igor-edited.tif') mask_ds = rasterio.open(mask_file) # Read Katia's richness model mod = modelr.load('/home/vagrant/katia/models/best_model_rich.rds') predicts.predictify(mod) # Import standard PREDICTS rasters rasters = predicts.rasterset('1km', 'medium', year=2005) # create an ISL_MAINL raster # set it to Mainlands this time round (set Mainlands to 1 and Islands to 0) rasters['ISL_MAINLMAINLAND'] = SimpleExpr('ISL_MAINLMAINLAND', '2') rasters['ISL_MAINLISLAND'] = SimpleExpr('ISL_MAINLISLAND', '0') # specify the plantation forest maps as 0 # not sure why it's plantations_pri rather than plantation, but hey ho rasters['plantation_pri'] = SimpleExpr('plantation_pri', '0') rasters['plantation_pri_minimal'] = SimpleExpr('plantation_pri_minimal', '0') rasters['plantation_pri_light'] = SimpleExpr('plantation_pri_light', '0')
# specify the model version fldr = ['v1', 'v2', 'v3'] # Open the mask shape file shp_file = 'c:/data/from-adriana/tropicalforests.shp' shapes = fiona.open(shp_file) # for each model version for version in fldr: # get the model name mod_name = 'simplifiedAbundanceModel_' + version + '.rds' # Read in the model mod = modelr.load('C:/data/from-adriana/ModelsForProjections/' + mod_name) predicts.predictify(mod) # pull out the reference value for this model df = pandas.read_csv( 'C:/data/from-adriana/ValuesForProjections/abData.csv') value_name = 'reference_' + version ref = float(df[df['Value'] == value_name]['zeroValue']) # for each year for year in range(2001, 2013): # This line imports standard PREDICTS rasters #rasters = predicts.rasterset('1km', 'version3.3', year, 'medium') # we don't need this anymore as we're importing our own data