def plot_per_experiment(): for filename in glob.glob('*all_model*'): with open(filename, 'rb') as f: results = cPickle.load(f) results.pop(0) # Remove params dnn_relu_models = results[0:10] dnn_sigmoid_models = results[10:20] dnn_tanh_models = results[20:30] gdbn_models = results[30:40] dbn_models = results[40:50] plt.figure(filename) plt.ylabel('Accuracy (m)', fontsize=40) plt.xlabel('Layers', fontsize=40) plt.grid(True) plt.tick_params(axis='both', which='major', labelsize=20) plt.xticks(range(0, 15, 1)) plt.xlim([0, 10]) plt.ylim([0, 9]) plt.plot(get_metrics(results=dnn_relu_models), label='DNN Relu', linewidth=5.0) plt.plot(get_metrics(results=dnn_sigmoid_models), label='DNN Sigmoid', linewidth=5.0) plt.plot(get_metrics(results=dnn_tanh_models), label='DNN Tanh', linewidth=5.0) plt.plot(get_metrics(results=gdbn_models), label='GR-DBN', linewidth=5.0) plt.plot(get_metrics(results=dbn_models), label='DBN', linewidth=5.0) plt.legend(fontsize='x-large') plt.show()
def get_latex_table(): with open('traditional_algorithms_sklearn_seed_5', 'rb') as f: results = cPickle.load(f) results.pop(0) # Remove params with open('all_models_with_out_noise_neither_dropout_theano_seed_5', 'rb') as f: deep_results = cPickle.load(f) results.append(deep_results[8]) results.append(deep_results[18]) results.append(deep_results[28]) results.append(deep_results[38]) results.append(deep_results[48]) get_metrics(results=results, latex=True)
def plot_all_experiments(): plt.figure("Depth experiement") plt.ylabel('Accuracy (m)', fontsize=30) plt.xlabel('Layers', fontsize=30) plt.ylim([0, 10]) plt.yticks(range(0, 11)) plt.grid(True) plt.tick_params(axis='both', which='major', labelsize=20) for filename in glob.glob('*seed*'): with open(filename, 'rb') as f: results = cPickle.load(f) results.pop(0) # Remove params lst_error = get_metrics( results=results ) plt.plot(lst_error, label=filename, linewidth=5.0) plt.legend(fontsize='large') plt.show()