示例#1
0
 def setUp(self):
     scheduler.initialize()
示例#2
0
    def fall_duration_helper():
        g = Cell('g')
        one_half = Cell('one half')
        t_to_2 = Cell('t^2')
        g_times_t_to_2 = Cell('gt^2')

        (constant(Interval(9.789, 9.832)))(g)
        (constant(Interval(0.5, 0.5)))(one_half)
        quadratic(t, t_to_2)
        product(g, t_to_2, g_times_t_to_2)
        product(one_half, g_times_t_to_2, h)

    return fall_duration_helper

if __name__ == '__main__':
    scheduler.initialize()

    # We now build a sequence of sample dependency tracking systems of
    # increasing complexity. We start with a relatively simple system
    # that only tracks and reports the provenance of its data.
    #
    # How do we want our provenance system to work? We can make cells
    # and define networks as usual, but if we add supported values as inputs,
    # we get supported values as outputs:

    barometer_height = Cell('barometer height')
    barometer_shadow = Cell('barometer shadow')
    building_height = Cell('building height')
    building_shadow = Cell('building shadow')

    similar_triangles(barometer_shadow, barometer_height, building_shadow, building_height)
示例#3
0
defined in this module.
"""
def good_enuf(g, x, done):
    @compound(neighbors=[g, x])
    def to_do():
        g_to_2 = Cell('g^2')
        x_minus_g_to_2 = Cell('x-g^2')
        ax_minus_g_to_2 = Cell('abs(x-g^2)')

        multiplier(g, g, g_to_2)
        subtractor(x, g_to_2, x_minus_g_to_2)
        absolute_value(x_minus_g_to_2, ax_minus_g_to_2)
        less_than(ax_minus_g_to_2, eps, done)

    return to_do


if __name__ == '__main__':
    scheduler.initialize()

    x = Cell('x')
    answer = Cell('answer')

    sqrt_network(x, answer)

    x.add_content(2)

    scheduler.run()

    print(answer.content)
示例#4
0
 def setUp(self):
     scheduler.initialize()