示例#1
0
def get_wf(wavelength, gridsize, PASSVALUE={}):
    diam = PASSVALUE.get('diam', 0.3)  # telescope diameter in meters
    m1_fl = PASSVALUE.get('m1_fl', 0.5717255)  # primary focal length (m)
    #beam_ratio     = PASSVALUE.get('beam_ratio',0.99)             # initial beam width/grid width
    tilt_x = PASSVALUE.get('tilt_x', 0.)  # Tilt angle along x (arc seconds)
    tilt_y = PASSVALUE.get('tilt_y', 0.)  # Tilt angle along y (arc seconds)

    beam_ratio = 0.99
    # Define the wavefront
    wfo = proper.prop_begin(diam, wavelength, gridsize, beam_ratio)

    # Point off-axis
    prop_tilt(wfo, tilt_x, tilt_y)

    # Input aperture
    proper.prop_circular_aperture(wfo, diam / 2.)

    # Define entrance
    proper.prop_define_entrance(wfo)

    proper.prop_lens(wfo, m1_fl, "primary")

    opd1_func = PASSVALUE['opd_func']

    def build_m1_opd():
        return gen_opdmap(opd1_func, proper.prop_get_gridsize(wfo),
                          proper.prop_get_sampling(wfo))

    wfo.wfarr *= build_phase_map(
        wfo, load_cacheable_grid(opd1_func.__name__, wfo, build_m1_opd, False))

    wf = proper.prop_get_wavefront(wfo)

    return wf
示例#2
0
def detector(wfo, conf):
    f_lens = conf['F_LENS']
    nd = conf['N_D']
    mode = conf['MODE']
    prefix = conf['PREFIX']
    Debug = conf['DEBUG']

    n = proper.prop_get_gridsize(wfo)
    if (n >= nd):
        proper.prop_propagate(wfo, f_lens, "to reimaging lens")
        proper.prop_lens(wfo, f_lens, "apply reimaging lens")
        proper.prop_propagate(wfo, f_lens, "final focus")
        (wfo, sampling) = proper.prop_end(
            wfo, NOABS=False
        )  # conclude the simulation --> noabs= the wavefront array will be complex
    else:
        print('Error: final image is bigger than initial grid size')
    psf = wfo[int(n / 2 - nd / 2):int(n / 2 + nd / 2),
              int(n / 2 - nd / 2):int(n / 2 + nd / 2)]
    out_dir = str('./output_files/')
    if (Debug == True):
        fits.writeto(out_dir + prefix + '_' + mode + '_PSF' + '.fits',
                     psf,
                     overwrite=True)
    return psf
示例#3
0
def simple_telescope(wavelength, gridsize):
    d_objective = 0.060
    fl_objective = 15.0 * d_objective
    fl_eyepiece = 0.021
    fl_eye = 0.022
    beam_ratio = 0.5

    wfo = proper.propbegin(d_objective, wavelength, gridsize, beam_ratio)

    proper.prop_circular_aperture(wfo, d_objective / 2)
    proper.prop_define_entrance(wfo)

    proper.prop_lens(wfo, fl_objective, "objective")

    proper.prop_propagate(wfo, fl_objective + fl_eyepiece, "eyepiece")
    proper.prop_lens(wfo, fl_eyepiece, "eyepiece")

    exit_pupil_distance = fl_eyepiece / (1 - fl_eyepiece /
                                         (fl_objective + fl_eyepiece))
    proper.prop_propagate(wfo, exit_pupil_distance, "exit pupil at eye lens:")
    proper.prop_lenx(wfo, fl_eye, "eye")

    proper.prop_propagate(wfo, fl_eye, "retina")

    (wfo, sampling) = proper.prop_end(wfo)

    return (wfo, sampling)
示例#4
0
def lens(wf, focal=660, offset_before=0, offset_after=0, **conf):

    # propagation before lens
    proper.prop_propagate(wf, focal + offset_before)
    # Fourier transform of an image using a lens
    proper.prop_lens(wf, focal)
    # propagation after lens
    proper.prop_propagate(wf, focal + offset_after)
示例#5
0
def add_zern_ab(wfo, f_lens):
    proper.prop_zernikes(wfo, [4, 11], np.array([500, 500]) * 1.0e-6)
    # [2,3], [0.5,0.5]*1.0e-6
    # FPWFS.quicklook_wf(wfo)
    proper.prop_lens(wfo, f_lens, "objective")

    #propagate through focus to pupil
    proper.prop_propagate(wfo, f_lens * 2, "telescope pupil imaging lens")
    proper.prop_lens(wfo, f_lens, "telescope pupil imaging lens")
    proper.prop_propagate(wfo, f_lens, "DM")
示例#6
0
def prop_pass_lens(wf, fl_lens, dist):
    """
    pass the wavefront through a lens then propagate to the next surface

    :param wf: single wavefront of shape=(sp.grid_sz, sp.grid_sz)
    :param fl_lens: focal length in m
    :param dist: distance in m
    """
    proper.prop_lens(wf, fl_lens)
    proper.prop_propagate(wf, dist)
示例#7
0
def prop_mid_optics(wfo, f_lens):
    # proper.prop_propagate(wfo, f_lens)
    # quicklook_wf(wfo)

    proper.prop_lens(wfo, f_lens)
    # print 'here'
    # quicklook_wf(wfo)
    # propagate through focus to pupil
    # proper.prop_propagate(wfo, f_lens*2)
    # proper.prop_lens(wfo, f_lens)
    proper.prop_propagate(wfo, f_lens)
示例#8
0
def lens(wf, focal=660, lens_method='proper', offset_before=0, offset_after=0, **conf):
    
    # propagation before lens
    proper.prop_propagate(wf, focal + offset_before)
    # Fourier transform of an image using a lens
    if lens_method == 'proper':
        proper.prop_lens(wf, focal)
    elif lens_method == 'numpy':
        wf._wfarr = fft.fft2(wf._wfarr)/wf._ngrid
    elif lens_method == 'pyfftw':
        wf._wfarr = fftw.fft2(wf._wfarr)/wf._ngrid
    # propagation after lens
    proper.prop_propagate(wf, focal + offset_after)
示例#9
0
def prefocal_image(wavelength, gridsize, PASSVAL):
    diam = PASSVAL['diam']
    focal_length = PASSVAL['focal_length']
    beam_ratio = PASSVAL['beam_ratio']
    wfo = proper.prop_begin(diam, wavelength, gridsize, beam_ratio)

    proper.prop_circular_aperture(wfo, diam/2)
    proper.prop_define_entrance(wfo)
    proper.prop_zernikes(wfo, [i+1 for i in range(len(PASSVAL['ZERN']))], PASSVAL['ZERN'])
    #print(proper.prop_get_phase(wfo)[gridsize//2,:])
    proper.prop_lens(wfo, focal_length)

    proper.prop_propagate(wfo, focal_length - PASSVAL['DEFOCUS'], TO_PLANE=False)
    (wfo, sampling) = proper.prop_end(wfo)

    return (wfo, sampling)
def simple_telescope(wavelength, gridsize):
    diam = 1.0
    focal_ratio = 15.0
    focal_length = diam * focal_ratio
    beam_ratio = 0.5

    wfo = proper.prop_begin(diam, wavelength, gridsize, beam_ratio)

    proper.prop_circular_aperture(wfo, diam / 2)
    proper.prop_zernikes(wfo, [5], [1e-6])
    proper.prop_define_entrance(wfo)
    proper.prop_lens(wfo, focal_length * 0.98)

    proper.prop_propagate(wfo, focal_length)

    (wfo, sampling) = proper.prop_end(wfo)

    return (wfo, sampling)
示例#11
0
def detector(wfo, f_lens, nd, coronagraph_type, prefix, Debug=False):
    n = proper.prop_get_gridsize(wfo)
    if (n >= nd):
        proper.prop_propagate(wfo, f_lens, "to reimaging lens")
        proper.prop_lens(wfo, f_lens, "apply reimaging lens")
        proper.prop_propagate(wfo, f_lens, "final focus")
        (wfo, sampling) = proper.prop_end(
            wfo, NOABS=False
        )  # conclude the simulation --> noabs= the wavefront array will be complex
    else:
        print('Error: final image is bigger than initial grid size')
    psf = wfo[int(n / 2 - nd / 2):int(n / 2 + nd / 2),
              int(n / 2 - nd / 2):int(n / 2 + nd / 2)]
    out_dir = str('./output_files/')
    if (Debug == True):
        fits.writeto(out_dir + prefix + '_' + coronagraph_type + '_PSF' +
                     '.fits',
                     psf,
                     overwrite=True)
    return psf
示例#12
0
def lens(wf,
         focal=660,
         offset_before=0,
         offset_after=0,
         offset_light_trap=0,
         diam_light_trap=0,
         **conf):

    # propagation before lens
    proper.prop_propagate(wf, focal + offset_before)
    # Fourier transform of an image using a lens
    proper.prop_lens(wf, focal)

    # check for light trap
    if offset_light_trap == 0 and diam_light_trap == 0:
        # propagation after lens
        proper.prop_propagate(wf, focal + offset_after)
    else:
        # add light trap
        proper.prop_propagate(wf, focal - offset_light_trap)
        proper.prop_circular_aperture(wf, diam_light_trap, 0, 0, NORM=True)
        proper.prop_propagate(wf, offset_light_trap + offset_after)
示例#13
0
def coronagraph(wfo, f_lens, occulter_type, diam):
    
    proper.prop_lens(wfo, f_lens, "coronagraph imaging lens")
    proper.prop_propagate(wfo, f_lens, "occulter")
    
    # occulter sizes are specified here in units of lambda/diameter;
    # convert lambda/diam to radians then to meters
    lamda = proper.prop_get_wavelength(wfo)
    occrad = 4.                           # occulter radius in lam/D
    occrad_rad = occrad * lamda / diam    # occulter radius in radians
    dx_m = proper.prop_get_sampling(wfo)
    dx_rad = proper.prop_get_sampling_radians(wfo)    
    occrad_m = occrad_rad * dx_m / dx_rad  # occulter radius in meters

    plt.figure(figsize=(12,8))
        
    if occulter_type == "GAUSSIAN":
        r = proper.prop_radius(wfo)
        h = np.sqrt(-0.5 * occrad_m**2 / np.log(1 - np.sqrt(0.5)))
        gauss_spot = 1 - np.exp(-0.5 * (r/h)**2)
        proper.prop_multiply(wfo, gauss_spot)
        plt.suptitle("Gaussian spot", fontsize = 18)
    elif occulter_type == "SOLID":
        proper.prop_circular_obscuration(wfo, occrad_m)
        plt.suptitle("Solid spot", fontsize = 18)
    elif occulter_type == "8TH_ORDER":
        proper.prop_8th_order_mask(wfo, occrad, CIRCULAR = True)
        plt.suptitle("8th order band limited spot", fontsize = 18)
        
    # After occulter
    plt.subplot(1,2,1)
    plt.imshow(np.sqrt(proper.prop_get_amplitude(wfo)), origin = "lower", cmap = plt.cm.gray)
    plt.text(200, 10, "After Occulter", color = "w")
        
    proper.prop_propagate(wfo, f_lens, "pupil reimaging lens")  
    proper.prop_lens(wfo, f_lens, "pupil reimaging lens")
    
    proper.prop_propagate(wfo, 2*f_lens, "lyot stop")

    plt.subplot(1,2,2)        
    plt.imshow(proper.prop_get_amplitude(wfo)**0.2, origin = "lower", cmap = plt.cm.gray)
    plt.text(200, 10, "Before Lyot Stop", color = "w")
    plt.show()   
    
    if occulter_type == "GAUSSIAN":
        proper.prop_circular_aperture(wfo, 0.25, NORM = True)
    elif occulter_type == "SOLID":
        proper.prop_circular_aperture(wfo, 0.84, NORM = True)
    elif occulter_type == "8TH_ORDER":
        proper.prop_circular_aperture(wfo, 0.50, NORM = True)
    
    proper.prop_propagate(wfo, f_lens, "reimaging lens")
    proper.prop_lens(wfo, f_lens, "reimaging lens")
    
    proper.prop_propagate(wfo, f_lens, "final focus")
    
    return
def prescription_quad_tiltafter(wavelength, gridsize, 
                          PASSVALUE = {'diam': 0.3, 
                                       'm1_fl': 0.5717255, 
                                       'beam_ratio': 0.2, 
                                       'tilt_x': 0.0,
                                       'tilt_y': 0.0
                                      }):
    diam           = PASSVALUE['diam']           # telescope diameter in meters
    m1_fl          = PASSVALUE['m1_fl']          # primary focal length (m)
    beam_ratio     = PASSVALUE['beam_ratio']     # initial beam width/grid width
        
    tilt_x         = PASSVALUE['tilt_x']         # Tilt angle along x (arc seconds)
    tilt_y         = PASSVALUE['tilt_y']         # Tilt angle along y (arc seconds)
    
    # Define the wavefront
    wfo = proper.prop_begin(diam, wavelength, gridsize, beam_ratio)
        
    # Input aperture
    proper.prop_circular_aperture(wfo, diam/2)
    
    # Define entrance
    proper.prop_define_entrance(wfo)

    # Primary mirror (treat as quadratic lens)
    proper.prop_lens(wfo, m1_fl, "primary")

    # Point off-axis
    prop_tilt(wfo, tilt_x, tilt_y)

    # Focus
    proper.prop_propagate(wfo, m1_fl, "focus", TO_PLANE=True)

    # End
    (wfo, sampling) = proper.prop_end(wfo)

    return (wfo, sampling)
def prescription_rc_quad(wavelength, gridsize, PASSVALUE = {}):
    # Assign parameters from PASSVALUE struct or use defaults
    diam           = PASSVALUE.get('diam',0.3)                    # telescope diameter in meters
    m1_fl          = PASSVALUE.get('m1_fl',0.5717255)             # primary focal length (m)
    m1_hole_rad    = PASSVALUE.get('m1_hole_rad',0.035)           # Radius of hole in primary (m)
    m1_m2_sep      = PASSVALUE.get('m1_m2_sep',0.549337630333726) # primary to secondary separation (m)
    m2_fl          = PASSVALUE.get('m2_fl',-0.023378959)          # secondary focal length (m)
    bfl            = PASSVALUE.get('bfl',0.528110658881)          # nominal distance from secondary to focus (m)
    beam_ratio     = PASSVALUE.get('beam_ratio',0.2)              # initial beam width/grid width
    m2_rad         = PASSVALUE.get('m2_rad',0.059)                # Secondary half-diameter (m)
    m2_strut_width = PASSVALUE.get('m2_strut_width',0.01)         # Width of struts supporting M2 (m)
    m2_supports    = PASSVALUE.get('m2_supports',5)               # Number of support structs (assumed equally spaced)
    tilt_x         = PASSVALUE.get('tilt_x',0.)                   # Tilt angle along x (arc seconds)
    tilt_y         = PASSVALUE.get('tilt_y',0.)                   # Tilt angle along y (arc seconds)
    noabs          = PASSVALUE.get('noabs',False)                 # Output complex amplitude?
    use_caching    = PASSVALUE.get('use_caching',False)           # Use cached files if available?
    get_wf         = PASSVALUE.get('get_wf',False)                # Return wavefront

    # Can also specify a opd_func function with signature opd_func(r, phi)
    if 'phase_func' in PASSVALUE:
        print('DEPRECATED setting "phase_func": use "opd_func" instead')
        if 'opd_func' not in PASSVALUE:
            PASSVALUE['opd_func'] = PASSVALUE['phase_func']
    if 'phase_func_sec' in PASSVALUE:
        print('DEPRECATED setting "phase_func_sec": use "opd_func_sec" instead')
        if 'opd_func_sec' not in PASSVALUE:
            PASSVALUE['opd_func_sec'] = PASSVALUE['phase_func_sec']
    
    
    
    def build_m2_obs():
        # Input aperture
        grid = build_prop_circular_aperture(wfo, diam/2)

        # Secondary and structs obscuration
        grid *= build_prop_circular_obscuration(wfo, m2_rad) # secondary mirror obscuration
        # Spider struts/vanes, arranged evenly radiating out from secondary
        strut_length = diam/2 - m2_rad
        strut_step = 360/m2_supports
        strut_centre = m2_rad + strut_length/2
        for i in range(0, m2_supports):
            angle = i*strut_step
            radians = math.radians(angle) 
            xoff = math.cos(radians)*strut_centre
            yoff = math.sin(radians)*strut_centre
            grid *= build_prop_rectangular_obscuration(wfo, m2_strut_width,                                     strut_length,
                                                xoff, yoff,
                                                ROTATION = angle + 90)
        return grid
    
    
    
    
    
    
    # Define the wavefront
    wfo = proper.prop_begin(diam, wavelength, gridsize, beam_ratio)

    # Point off-axis
    prop_tilt(wfo, tilt_x, tilt_y)
    
    wfo.wfarr *= load_cacheable_grid('m2_obs', wfo, build_m2_obs, use_caching)
    
    # Normalize wavefront
    proper.prop_define_entrance(wfo)
    
    #if get_wf:
      #  wf = proper.prop_get_wavefront(wfo)
     #   print('Got wavefront')
    
    proper.prop_propagate(wfo, m1_m2_sep, "primary")
    
    # Primary mirror
    if 'opd_func' in PASSVALUE:
        opd1_func = PASSVALUE['opd_func']        
        def build_m1_opd():
            return gen_opdmap(opd1_func, proper.prop_get_gridsize(wfo), proper.prop_get_sampling(wfo))
        wfo.wfarr *= build_phase_map(wfo, load_cacheable_grid(opd1_func.__name__, wfo, build_m1_opd, use_caching))
        
    if get_wf:
        wf = proper.prop_get_wavefront(wfo)
        print('Got wavefront')
        
    if 'm1_conic' in PASSVALUE:
        prop_conic(wfo, m1_fl, PASSVALUE['m1_conic'], "conic primary")
    else:
        proper.prop_lens(wfo, m1_fl, "primary")
        
    wfo.wfarr *= build_prop_circular_obscuration(wfo, m1_hole_rad)

    # Secondary mirror
    proper.prop_propagate(wfo, m1_m2_sep, "secondary")
    if 'opd_func_sec' in PASSVALUE:
        opd2_func = PASSVALUE['opd_func_sec']
        def build_m2_opd():
            return gen_opdmap(opd2_func, proper.prop_get_gridsize(wfo), proper.prop_get_sampling(wfo))
        wfo.wfarr *= build_phase_map(wfo, load_cacheable_grid(opd2_func.__name__, wfo, build_m2_opd, use_caching))
        
    if 'm1_conic' in PASSVALUE:
        prop_conic(wfo, m2_fl, PASSVALUE['m2_conic'], "conic secondary")
    else:
        proper.prop_lens(wfo, m2_fl, "secondary")
                
    def build_m2_ap():
        return build_prop_circular_aperture(wfo, m2_rad)
    wfo.wfarr *= load_cacheable_grid('m2_ap', wfo, build_m2_ap)

#    proper.prop_state(wfo)

    # Hole through primary
    if m1_m2_sep<bfl:
        proper.prop_propagate(wfo, m1_m2_sep, "M1 hole")
        def build_m1_hole():
            return build_prop_circular_aperture(wfo, m1_hole_rad) 
        wfo.wfarr *= load_cacheable_grid('m1_hole', wfo, build_m1_hole)


    # Focus - bfl can be varied between runs
    if m1_m2_sep<bfl:
        proper.prop_propagate(wfo, bfl-m1_m2_sep, "focus", TO_PLANE=True)
    else:
        proper.prop_propagate(wfo, bfl, "focus", TO_PLANE=True)

#     # End
#     return proper.prop_end(wfo, NOABS = noabs)

    # End
    (wfo, sampling) = proper.prop_end(wfo)
    if get_wf:
        return (wfo, wf, sampling)
    else:
        return (wfo, sampling)
示例#16
0
def vortex(wfo, charge, f_lens, diam, pixelsize, Debug_print=False):

    n = int(proper.prop_get_gridsize(wfo))
    ofst = 0  # no offset
    ramp_sign = 1  #sign of charge is positive
    ramp_oversamp = 11.  # vortex is oversampled for a better discretization

    if charge != 0:
        wavelength = proper.prop_get_wavelength(wfo)
        gridsize = proper.prop_get_gridsize(wfo)
        beam_ratio = pixelsize * 4.85e-9 / (wavelength / diam)
        calib = str(charge) + str('_') + str(int(
            beam_ratio * 100)) + str('_') + str(gridsize)
        my_file = str(tmp_dir + 'zz_perf_' + calib + '_r.fits')

        proper.prop_propagate(wfo, f_lens, 'inizio')  # propagate wavefront
        proper.prop_lens(wfo, f_lens,
                         'focusing lens vortex')  # propagate through a lens
        proper.prop_propagate(wfo, f_lens, 'VC')  # propagate wavefront

        if (os.path.isfile(my_file) == True):
            if (Debug_print == True):
                print("Charge ", charge)
            vvc = readfield(tmp_dir, 'zz_vvc_' +
                            calib)  # read the theoretical vortex field
            vvc = proper.prop_shift_center(vvc)
            scale_psf = wfo._wfarr[0, 0]
            psf_num = readfield(tmp_dir,
                                'zz_psf_' + calib)  # read the pre-vortex field
            psf0 = psf_num[0, 0]
            psf_num = psf_num / psf0 * scale_psf
            perf_num = readfield(tmp_dir, 'zz_perf_' +
                                 calib)  # read the perfect-result vortex field
            perf_num = perf_num / psf0 * scale_psf
            wfo._wfarr = (
                wfo._wfarr - psf_num
            ) * vvc + perf_num  # the wavefront takes into account the real pupil with the perfect-result vortex field

        else:  # CAL==1: # create the vortex for a perfectly circular pupil
            if (Debug_print == True):
                print("Charge ", charge)

            wfo1 = proper.prop_begin(diam, wavelength, gridsize, beam_ratio)
            proper.prop_circular_aperture(wfo1, diam / 2)
            proper.prop_define_entrance(wfo1)
            proper.prop_propagate(wfo1, f_lens,
                                  'inizio')  # propagate wavefront
            proper.prop_lens(
                wfo1, f_lens,
                'focusing lens vortex')  # propagate through a lens
            proper.prop_propagate(wfo1, f_lens, 'VC')  # propagate wavefront

            writefield(tmp_dir, 'zz_psf_' + calib,
                       wfo1.wfarr)  # write the pre-vortex field
            nramp = int(n * ramp_oversamp)  #oversamp
            # create the vortex by creating a matrix (theta) representing the ramp (created by atan 2 gradually varying matrix, x and y)
            y1 = np.ones((nramp, ), dtype=np.int)
            y2 = np.arange(0, nramp, 1.) - (nramp / 2) - int(ramp_oversamp) / 2
            y = np.outer(y2, y1)
            x = np.transpose(y)
            theta = np.arctan2(y, x)
            x = 0
            y = 0
            vvc_tmp = np.exp(1j * (ofst + ramp_sign * charge * theta))
            theta = 0
            vvc_real_resampled = cv2.resize(
                vvc_tmp.real, (0, 0),
                fx=1 / ramp_oversamp,
                fy=1 / ramp_oversamp,
                interpolation=cv2.INTER_LINEAR
            )  # scale the pupil to the pupil size of the simualtions
            vvc_imag_resampled = cv2.resize(
                vvc_tmp.imag, (0, 0),
                fx=1 / ramp_oversamp,
                fy=1 / ramp_oversamp,
                interpolation=cv2.INTER_LINEAR
            )  # scale the pupil to the pupil size of the simualtions
            vvc = np.array(vvc_real_resampled, dtype=complex)
            vvc.imag = vvc_imag_resampled
            vvcphase = np.arctan2(vvc.imag,
                                  vvc.real)  # create the vortex phase
            vvc_complex = np.array(np.zeros((n, n)), dtype=complex)
            vvc_complex.imag = vvcphase
            vvc = np.exp(vvc_complex)
            vvc_tmp = 0.
            writefield(tmp_dir, 'zz_vvc_' + calib,
                       vvc)  # write the theoretical vortex field

            proper.prop_multiply(wfo1, vvc)
            proper.prop_propagate(wfo1, f_lens, 'OAP2')
            proper.prop_lens(wfo1, f_lens)
            proper.prop_propagate(wfo1, f_lens, 'forward to Lyot Stop')
            proper.prop_circular_obscuration(
                wfo1, 1., NORM=True)  # null the amplitude iside the Lyot Stop
            proper.prop_propagate(wfo1, -f_lens)  # back-propagation
            proper.prop_lens(wfo1, -f_lens)
            proper.prop_propagate(wfo1, -f_lens)
            writefield(tmp_dir, 'zz_perf_' + calib,
                       wfo1.wfarr)  # write the perfect-result vortex field

            vvc = readfield(tmp_dir, 'zz_vvc_' + calib)
            vvc = proper.prop_shift_center(vvc)
            scale_psf = wfo._wfarr[0, 0]
            psf_num = readfield(tmp_dir,
                                'zz_psf_' + calib)  # read the pre-vortex field
            psf0 = psf_num[0, 0]
            psf_num = psf_num / psf0 * scale_psf
            perf_num = readfield(tmp_dir, 'zz_perf_' +
                                 calib)  # read the perfect-result vortex field
            perf_num = perf_num / psf0 * scale_psf
            wfo._wfarr = (
                wfo._wfarr - psf_num
            ) * vvc + perf_num  # the wavefront takes into account the real pupil with the perfect-result vortex field

        proper.prop_propagate(wfo, f_lens, "propagate to pupil reimaging lens")
        proper.prop_lens(wfo, f_lens, "apply pupil reimaging lens")
        proper.prop_propagate(wfo, f_lens, "lyot stop")

    return wfo
示例#17
0
def scexao_model(lmda, grid_size, kwargs):
    """
    propagates instantaneous complex E-field thru Subaru from the DM through SCExAO

    uses PyPROPER3 to generate the complex E-field at the pupil plane, then propagates it through SCExAO 50x50 DM,
        then coronagraph, to the focal plane
    :returns spectral cube at instantaneous time in the focal_plane()
    """
    # print("Propagating Broadband Wavefront Through Subaru")

    # Initialize the Wavefront in Proper
    wfo = proper.prop_begin(entrance_d, lmda, grid_size, beam_ratio)

    # Defines aperture (baffle-before primary)
    proper.prop_circular_aperture(wfo, entrance_d / 2)
    proper.prop_define_entrance(wfo)  # normalizes abs intensity

    # Test Sampling
    if kwargs['verbose'] and kwargs['ix'] == 0:
        check1 = proper.prop_get_sampling(wfo)
        print(
            f"\n\tDM Pupil Plane\n"
            f"sampling at aperture is {check1 * 1e3:.4f} mm\n"
            f"Total Sim is {check1 * 1e3 * grid_size:.2f}x{check1 * 1e3 * grid_size:.2f} mm\n"
            f"Diameter of beam is {check1 * 1e3 * grid_size * beam_ratio:.4f} mm over {grid_size * beam_ratio} pix"
        )

    # SCExAO Reimaging 1
    proper.prop_lens(
        wfo, fl_SxOAPG)  # produces f#14 beam (approx exit beam of AO188)
    proper.prop_propagate(wfo, fl_SxOAPG * 2)  # move to second pupil
    if kwargs['verbose'] and kwargs['ix'] == 0:
        print(f"initial f# is {proper.prop_get_fratio(wfo):.2f}\n")

    ########################################
    # Import/Apply Actual DM Map
    # #######################################
    plot_flag = False
    if kwargs['verbose'] and kwargs['ix'] == 0:
        plot_flag = True

    dm_map = kwargs['map']
    errormap(wfo,
             dm_map,
             SAMPLING=dm_pitch,
             MIRROR_SURFACE=True,
             MASKING=True,
             BR=beam_ratio,
             PLOT=plot_flag)  # MICRONS=True

    if kwargs['verbose'] and kwargs['ix'] == 0:
        fig, subplot = plt.subplots(nrows=1, ncols=2, figsize=(12, 5))
        ax1, ax2 = subplot.flatten()
        fig.suptitle('SCExAO Model WFO after errormap',
                     fontweight='bold',
                     fontsize=14)
        ax1.imshow(proper.prop_get_amplitude(wfo), interpolation='none'
                   )  # np.abs(proper.prop_shift_center(wfo.wfarr))**2
        ax1.set_title('Amplitude')
        ax2.imshow(
            proper.prop_get_phase(wfo),
            interpolation=
            'none',  # np.angle(proper.prop_shift_center(wfo.wfarr))
            vmin=-1 * np.pi,
            vmax=1 * np.pi,
            cmap='hsv')  # , cmap='hsv'
        ax2.set_title('Phase')

    # ------------------------------------------------
    # SCExAO Reimaging 2
    proper.prop_lens(wfo, fl_SxOAPG)
    proper.prop_propagate(wfo,
                          fl_SxOAPG)  # focus at exit of DM telescope system
    proper.prop_lens(wfo, fl_SxOAPG)
    proper.prop_propagate(wfo,
                          fl_SxOAPG)  # focus at exit of DM telescope system

    # # Coronagraph
    SubaruPupil(wfo)  # focal plane mask
    # if kwargs['verbose'] and kwargs['ix']==0:
    #     fig, subplot = plt.subplots(nrows=1, ncols=2, figsize=(12, 5))
    #     ax1, ax2 = subplot.flatten()
    #     fig.suptitle('SCExAO Model WFO after FPM', fontweight='bold', fontsize=14)
    #     # ax.imshow(dm_map, interpolation='none')
    #     ax1.imshow(np.abs(proper.prop_shift_center(wfo.wfarr))**2, interpolation='none', norm=LogNorm(vmin=1e-7,vmax=1e-2))
    #     ax1.set_title('Amplitude')
    #     ax2.imshow(np.angle(proper.prop_shift_center(wfo.wfarr)), interpolation='none',
    #                vmin=-2*np.pi, vmax=2*np.pi, cmap='hsv')  # , cmap='hsv'
    #     ax2.set_title('Phase')
    proper.prop_propagate(wfo, fl_SxOAPG)
    proper.prop_lens(wfo, fl_SxOAPG)
    proper.prop_propagate(wfo, fl_SxOAPG)  # middle of 2f system
    proper.prop_circular_aperture(wfo, lyot_size, NORM=True)  # lyot stop
    proper.prop_propagate(wfo, fl_SxOAPG)  #
    proper.prop_lens(wfo, fl_SxOAPG)  # exit lens of gaussian telescope
    proper.prop_propagate(wfo, fl_SxOAPG)  # to focus

    # MEC Pickoff reimager.
    proper.prop_propagate(wfo, mec_parax_fl)  # to another pupil
    proper.prop_lens(
        wfo, mec_parax_fl)  # collimating lens, pupil size should be 8 mm
    proper.prop_propagate(wfo, mec1_fl +
                          .0142557)  # mec1_fl  .054  mec1_fl+.0101057
    # if kwargs['verbose'] and kwargs['ix']==0:
    #     current = proper.prop_get_beamradius(wfo)
    #     print(f'Beam Radius after SCExAO exit (at MEC foreoptics entrance) is {current*1e3:.3f} mm\n'
    #           f'current f# is {proper.prop_get_fratio(wfo):.2f}\n')

    # ##################################
    # MEC Optics Box
    # ###################################
    proper.prop_circular_aperture(wfo,
                                  0.00866)  # reading off the zemax diameter
    proper.prop_lens(wfo, mec1_fl)  # MEC lens 1
    proper.prop_propagate(wfo,
                          mec_l1_l2)  # there is a image plane at z=mec1_fl
    proper.prop_lens(wfo, mec2_fl)  # MEC lens 2 (tiny lens)
    proper.prop_propagate(wfo, mec_l2_l3)
    proper.prop_lens(wfo, mec3_fl)  # MEC lens 3
    proper.prop_propagate(wfo, mec3_fl,
                          TO_PLANE=False)  # , TO_PLANE=True mec_l3_focus

    # #######################################
    # Focal Plane
    # #######################################
    # Check Sampling in focal plane
    # shifts wfo from Fourier Space (origin==lower left corner) to object space (origin==center)
    # wf, samp = proper.prop_end(wfo, NoAbs=True)
    wf = proper.prop_shift_center(wfo.wfarr)
    wf = extract_center(wf, new_size=np.array(kwargs['psf_size']))
    samp = proper.prop_get_sampling(wfo)
    smp_asec = proper.prop_get_sampling_arcsec(wfo)

    if kwargs['verbose'] and kwargs['ix'] == 0:
        fig, subplot = plt.subplots(nrows=1, ncols=2, figsize=(12, 5))
        fig.subplots_adjust(left=0.08, hspace=.4, wspace=0.2)

        ax1, ax2 = subplot.flatten()
        fig.suptitle('SCExAO Model Focal Plane',
                     fontweight='bold',
                     fontsize=14)
        tic_spacing, tic_labels, axlabel = scale_lD(
            wfo, newsize=kwargs['psf_size'][0])
        tic_spacing[0] = tic_spacing[0] + 1  # hack for edge effects
        tic_spacing[-1] = tic_spacing[-1] - 1  # hack for edge effects

        im = ax1.imshow(
            np.abs(wf)**2,
            interpolation='none',
            norm=LogNorm(
                vmin=1e-7,
                vmax=1e-2))  # np.abs(proper.prop_shift_center(wfo.wfarr))**2
        ax1.set_xticks(tic_spacing)
        ax1.set_xticklabels(tic_labels)
        ax1.set_yticks(tic_spacing)
        ax1.set_yticklabels(tic_labels)
        ax1.set_ylabel(axlabel, fontsize=8)
        add_colorbar(im)

        im = ax2.imshow(np.angle(wf),
                        interpolation='none',
                        vmin=-np.pi,
                        vmax=np.pi,
                        cmap='hsv')
        ax2.set_xticks(tic_spacing)
        ax2.set_xticklabels(tic_labels)
        ax2.set_yticks(tic_spacing)
        ax2.set_yticklabels(tic_labels)
        ax2.set_ylabel(axlabel, fontsize=8)
        add_colorbar(im)

    if kwargs['verbose'] and kwargs['ix'] == 0:
        print(
            f"\nFocal Plane\n"
            f"sampling at focal plane is {samp*1e6:.1f} um ~= {smp_asec * 1e3:.4f} mas\n"
            f"\tfull FOV is {samp * kwargs['psf_size'][0] * 1e3:.2f} x {samp * kwargs['psf_size'][1] * 1e3:.2f} mm "
        )
        # s_rad = proper.prop_get_sampling_radians(wfo)
        # print(f"sampling at focal plane is {s_rad * 1e6:.6f} urad")
        print(f'final focal ratio is {proper.prop_get_fratio(wfo)}')

        print(f"Finished simulation")

    return wf, samp
示例#18
0
def add_aber(wfo, f_lens, aber_params, aber_vals, step=0, Loc='CPA'):
    if aber_params['QuasiStatic'] == False:
        step = 0

    # print aber_params
    if aber_params['Phase']:
        for surf in range(aber_params['n_surfs']):
            filename = '%s%s_Phase%f_v%i.fits' % (iop.aberdir, Loc,
                                                  step * cp.frame_time, surf)
            # print filename
            rms_error = np.random.normal(aber_vals['a'][0], aber_vals['a'][1])
            # print rms_error
            c_freq = np.random.normal(
                aber_vals['b'][0],
                aber_vals['b'][1])  # correlation frequency (cycles/meter)
            # print c_freq
            high_power = np.random.normal(
                aber_vals['c'][0],
                aber_vals['c'][1])  # high frewquency falloff (r^-high_power)
            # print high_power
            # quicklook_wf(wfo)
            if aber_params['OOPP']:
                proper.prop_lens(wfo, f_lens, "OOPP")
                proper.prop_propagate(wfo, f_lens / aber_params['OOPP'][surf])
            #     quicklook_wf(wfo)
            prim_map = proper.prop_psd_errormap(wfo,
                                                rms_error,
                                                c_freq,
                                                high_power,
                                                FILE=filename,
                                                TPF=True)
            if aber_params['OOPP']:
                proper.prop_propagate(
                    wfo,
                    f_lens + f_lens * (1 - 1. / aber_params['OOPP'][surf]))
                proper.prop_lens(wfo, f_lens, "OOPP")
                # quicklook_wf(wfo)
            # quicklook_im(prim_map*1e9, logAmp=False, colormap="jet", show=True, axis=None, title='nm', pupil=True)

    if aber_params['Amp']:
        # filename = '%s%s_Amp%f.fits' % (iop.aberdir, Loc, step * cp.frame_time)
        for surf in range(aber_params['n_surfs']):
            filename = '%s%s_Amp%f_v%i.fits' % (iop.aberdir, Loc,
                                                step * cp.frame_time, surf)
            # print filename
            rms_error = np.random.normal(aber_vals['a_amp'][0],
                                         aber_vals['a_amp'][1])
            # print rms_error
            c_freq = np.random.normal(
                aber_vals['b'][0],
                aber_vals['b'][1])  # correlation frequency (cycles/meter)
            # print c_freq
            high_power = np.random.normal(
                aber_vals['c'][0],
                aber_vals['c'][1])  # high frewquency falloff (r^-high_power)
            # print high_power
            prim_map = proper.prop_psd_errormap(wfo,
                                                rms_error,
                                                c_freq,
                                                high_power,
                                                FILE=filename,
                                                AMPLITUDE=1.0)
示例#19
0
    def occulter(self, wf):

        n = int(proper.prop_get_gridsize(wf))
        ofst = 0  # no offset
        ramp_sign = 1  # sign of charge is positive
        ramp_oversamp = 11.  # vortex is oversampled for a better discretization

        # f_lens = tp.f_lens #conf['F_LENS']
        # diam = tp.diam#conf['DIAM']
        charge = 2  #conf['CHARGE']
        pixelsize = 5  #conf['PIXEL_SCALE']
        Debug_print = False  #conf['DEBUG_PRINT']

        coron_temp = os.path.join(iop.testdir, 'coron_maps/')
        if not os.path.exists(coron_temp):
            os.mkdir(coron_temp)

        if charge != 0:
            wavelength = proper.prop_get_wavelength(wf)
            gridsize = proper.prop_get_gridsize(wf)
            beam_ratio = pixelsize * 4.85e-9 / (wavelength / tp.entrance_d)
            # dprint((wavelength,gridsize,beam_ratio))
            calib = str(charge) + str('_') + str(int(
                beam_ratio * 100)) + str('_') + str(gridsize)
            my_file = str(coron_temp + 'zz_perf_' + calib + '_r.fits')

            if (os.path.isfile(my_file) == True):
                if (Debug_print == True):
                    print("Charge ", charge)
                vvc = self.readfield(
                    coron_temp,
                    'zz_vvc_' + calib)  # read the theoretical vortex field
                vvc = proper.prop_shift_center(vvc)
                scale_psf = wf._wfarr[0, 0]
                psf_num = self.readfield(coron_temp, 'zz_psf_' +
                                         calib)  # read the pre-vortex field
                psf0 = psf_num[0, 0]
                psf_num = psf_num / psf0 * scale_psf
                perf_num = self.readfield(
                    coron_temp,
                    'zz_perf_' + calib)  # read the perfect-result vortex field
                perf_num = perf_num / psf0 * scale_psf
                wf._wfarr = (
                    wf._wfarr - psf_num
                ) * vvc + perf_num  # the wavefront takes into account the real pupil with the perfect-result vortex field

            else:  # CAL==1: # create the vortex for a perfectly circular pupil
                if (Debug_print == True):
                    dprint(f"Vortex Charge= {charge}")

                f_lens = 200.0 * tp.entrance_d
                wf1 = proper.prop_begin(tp.entrance_d, wavelength, gridsize,
                                        beam_ratio)
                proper.prop_circular_aperture(wf1, tp.entrance_d / 2)
                proper.prop_define_entrance(wf1)
                proper.prop_propagate(wf1, f_lens,
                                      'inizio')  # propagate wavefront
                proper.prop_lens(
                    wf1, f_lens,
                    'focusing lens vortex')  # propagate through a lens
                proper.prop_propagate(wf1, f_lens, 'VC')  # propagate wavefront

                self.writefield(coron_temp, 'zz_psf_' + calib,
                                wf1.wfarr)  # write the pre-vortex field
                nramp = int(n * ramp_oversamp)  # oversamp
                # create the vortex by creating a matrix (theta) representing the ramp (created by atan 2 gradually varying matrix, x and y)
                y1 = np.ones((nramp, ), dtype=np.int)
                y2 = np.arange(0, nramp,
                               1.) - (nramp / 2) - int(ramp_oversamp) / 2
                y = np.outer(y2, y1)
                x = np.transpose(y)
                theta = np.arctan2(y, x)
                x = 0
                y = 0
                vvc_tmp = np.exp(1j * (ofst + ramp_sign * charge * theta))
                theta = 0
                vvc_real_resampled = cv2.resize(
                    vvc_tmp.real, (0, 0),
                    fx=1 / ramp_oversamp,
                    fy=1 / ramp_oversamp,
                    interpolation=cv2.INTER_LINEAR
                )  # scale the pupil to the pupil size of the simualtions
                vvc_imag_resampled = cv2.resize(
                    vvc_tmp.imag, (0, 0),
                    fx=1 / ramp_oversamp,
                    fy=1 / ramp_oversamp,
                    interpolation=cv2.INTER_LINEAR
                )  # scale the pupil to the pupil size of the simualtions
                vvc = np.array(vvc_real_resampled, dtype=complex)
                vvc.imag = vvc_imag_resampled
                vvcphase = np.arctan2(vvc.imag,
                                      vvc.real)  # create the vortex phase
                vvc_complex = np.array(np.zeros((n, n)), dtype=complex)
                vvc_complex.imag = vvcphase
                vvc = np.exp(vvc_complex)
                vvc_tmp = 0.
                self.writefield(coron_temp, 'zz_vvc_' + calib,
                                vvc)  # write the theoretical vortex field

                proper.prop_multiply(wf1, vvc)
                proper.prop_propagate(wf1, f_lens, 'OAP2')
                proper.prop_lens(wf1, f_lens)
                proper.prop_propagate(wf1, f_lens, 'forward to Lyot Stop')
                proper.prop_circular_obscuration(
                    wf1, 1.,
                    NORM=True)  # null the amplitude iside the Lyot Stop
                proper.prop_propagate(wf1, -f_lens)  # back-propagation
                proper.prop_lens(wf1, -f_lens)
                proper.prop_propagate(wf1, -f_lens)
                self.writefield(
                    coron_temp, 'zz_perf_' + calib,
                    wf1.wfarr)  # write the perfect-result vortex field

                vvc = self.readfield(coron_temp, 'zz_vvc_' + calib)
                vvc = proper.prop_shift_center(vvc)
                scale_psf = wf._wfarr[0, 0]
                psf_num = self.readfield(coron_temp, 'zz_psf_' +
                                         calib)  # read the pre-vortex field
                psf0 = psf_num[0, 0]
                psf_num = psf_num / psf0 * scale_psf
                perf_num = self.readfield(
                    coron_temp,
                    'zz_perf_' + calib)  # read the perfect-result vortex field
                perf_num = perf_num / psf0 * scale_psf
                wf._wfarr = (
                    wf._wfarr - psf_num
                ) * vvc + perf_num  # the wavefront takes into account the real pupil with the perfect-result vortex field

        return wf
示例#20
0
def wfirst_phaseb(lambda_m, output_dim0, PASSVALUE={'dummy': 0}):

    # "output_dim" is used to specify the output dimension in pixels at the final image plane.
    # Computational grid sizes are hardcoded for each coronagraph.
    # Based on Zemax prescription "WFIRST_CGI_DI_LOWFS_Sep24_2018.zmx" by Hong Tang.

    data_dir = wfirst_phaseb_proper.data_dir
    if 'PASSVALUE' in locals():
        if 'data_dir' in PASSVALUE: data_dir = PASSVALUE['data_dir']

    map_dir = data_dir + wfirst_phaseb_proper.map_dir
    polfile = data_dir + wfirst_phaseb_proper.polfile

    cor_type = 'hlc'  # coronagraph type ('hlc', 'spc', 'none')
    source_x_offset_mas = 0  # source offset in mas (tilt applied at primary)
    source_y_offset_mas = 0
    source_x_offset = 0  # source offset in lambda0_m/D radians (tilt applied at primary)
    source_y_offset = 0
    polaxis = 0  # polarization axis aberrations:
    #    -2 = -45d in, Y out
    #    -1 = -45d in, X out
    #     1 = +45d in, X out
    #     2 = +45d in, Y out
    #     5 = mean of modes -1 & +1 (X channel polarizer)
    #     6 = mean of modes -2 & +2 (Y channel polarizer)
    #    10 = mean of all modes (no polarization filtering)
    use_errors = 1  # use optical surface phase errors? 1 or 0
    zindex = np.array([0, 0])  # array of Zernike polynomial indices
    zval_m = np.array([0, 0])  # array of Zernike coefficients (meters RMS WFE)
    use_aperture = 0  # use apertures on all optics? 1 or 0
    cgi_x_shift_pupdiam = 0  # X,Y shear of wavefront at FSM (bulk displacement of CGI); normalized relative to pupil diameter
    cgi_y_shift_pupdiam = 0
    cgi_x_shift_m = 0  # X,Y shear of wavefront at FSM (bulk displacement of CGI) in meters
    cgi_y_shift_m = 0
    fsm_x_offset_mas = 0  # offset in focal plane caused by tilt of FSM in mas
    fsm_y_offset_mas = 0
    fsm_x_offset = 0  # offset in focal plane caused by tilt of FSM in lambda0/D
    fsm_y_offset = 0
    end_at_fsm = 0  # end propagation after propagating to FSM (no FSM errors)
    focm_z_shift_m = 0  # offset (meters) of focus correction mirror (+ increases path length)
    use_hlc_dm_patterns = 0  # use Dwight's HLC default DM wavefront patterns? 1 or 0
    use_dm1 = 0  # use DM1? 1 or 0
    use_dm2 = 0  # use DM2? 1 or 0
    dm_sampling_m = 0.9906e-3  # actuator spacing in meters
    dm1_xc_act = 23.5  # for 48x48 DM, wavefront centered at actuator intersections: (0,0) = 1st actuator center
    dm1_yc_act = 23.5
    dm1_xtilt_deg = 0  # tilt around X axis (deg)
    dm1_ytilt_deg = 5.7  # effective DM tilt in deg including 9.65 deg actual tilt and pupil ellipticity
    dm1_ztilt_deg = 0  # rotation of DM about optical axis (deg)
    dm2_xc_act = 23.5  # for 48x48 DM, wavefront centered at actuator intersections: (0,0) = 1st actuator center
    dm2_yc_act = 23.5
    dm2_xtilt_deg = 0  # tilt around X axis (deg)
    dm2_ytilt_deg = 5.7  # effective DM tilt in deg including 9.65 deg actual tilt and pupil ellipticity
    dm2_ztilt_deg = 0  # rotation of DM about optical axis (deg)
    use_pupil_mask = 1  # SPC only: use SPC pupil mask (0 or 1)
    mask_x_shift_pupdiam = 0  # X,Y shear of shaped pupil mask; normalized relative to pupil diameter
    mask_y_shift_pupdiam = 0
    mask_x_shift_m = 0  # X,Y shear of shaped pupil mask in meters
    mask_y_shift_m = 0
    use_fpm = 1  # use occulter? 1 or 0
    fpm_x_offset = 0  # FPM x,y offset in lambda0/D
    fpm_y_offset = 0
    fpm_x_offset_m = 0  # FPM x,y offset in meters
    fpm_y_offset_m = 0
    fpm_z_shift_m = 0  # occulter offset in meters along optical axis (+ = away from prior optics)
    pinhole_diam_m = 0  # FPM pinhole diameter in meters
    end_at_fpm_exit_pupil = 0  # return field at FPM exit pupil?
    output_field_rootname = ''  # rootname of FPM exit pupil field file (must set end_at_fpm_exit_pupil=1)
    use_lyot_stop = 1  # use Lyot stop? 1 or 0
    lyot_x_shift_pupdiam = 0  # X,Y shear of Lyot stop mask; normalized relative to pupil diameter
    lyot_y_shift_pupdiam = 0
    lyot_x_shift_m = 0  # X,Y shear of Lyot stop mask in meters
    lyot_y_shift_m = 0
    use_field_stop = 1  # use field stop (HLC)? 1 or 0
    field_stop_radius_lam0 = 0  # field stop radius in lambda0/D (HLC or SPC-wide mask only)
    field_stop_x_offset = 0  # field stop offset in lambda0/D
    field_stop_y_offset = 0
    field_stop_x_offset_m = 0  # field stop offset in meters
    field_stop_y_offset_m = 0
    use_pupil_lens = 0  # use pupil imaging lens? 0 or 1
    use_defocus_lens = 0  # use defocusing lens? Options are 1, 2, 3, 4, corresponding to +18.0, +9.0, -4.0, -8.0 waves P-V @ 550 nm
    defocus = 0  # instead of specific lens, defocus in waves P-V @ 550 nm (-8.7 to 42.0 waves)
    final_sampling_m = 0  # final sampling in meters (overrides final_sampling_lam0)
    final_sampling_lam0 = 0  # final sampling in lambda0/D
    output_dim = output_dim0  # dimension of output in pixels (overrides output_dim0)

    if 'PASSVALUE' in locals():
        if 'use_fpm' in PASSVALUE: use_fpm = PASSVALUE['use_fpm']
        if 'cor_type' in PASSVALUE: cor_type = PASSVALUE['cor_type']

    is_spc = False
    is_hlc = False

    if cor_type == 'hlc':
        is_hlc = True
        file_directory = data_dir + '/hlc_20190210/'  # must have trailing "/"
        prefix = file_directory + 'run461_'
        pupil_diam_pix = 309.0
        pupil_file = prefix + 'pupil_rotated.fits'
        lyot_stop_file = prefix + 'lyot.fits'
        lambda0_m = 0.575e-6
        lam_occ = [
            5.4625e-07, 5.49444444444e-07, 5.52638888889e-07, 5.534375e-07,
            5.55833333333e-07, 5.59027777778e-07, 5.60625e-07,
            5.62222222222e-07, 5.65416666667e-07, 5.678125e-07,
            5.68611111111e-07, 5.71805555556e-07, 5.75e-07, 5.78194444444e-07,
            5.81388888889e-07, 5.821875e-07, 5.84583333333e-07,
            5.87777777778e-07, 5.89375e-07, 5.90972222222e-07,
            5.94166666667e-07, 5.965625e-07, 5.97361111111e-07,
            6.00555555556e-07, 6.0375e-07
        ]
        lam_occs = [
            '5.4625e-07', '5.49444444444e-07', '5.52638888889e-07',
            '5.534375e-07', '5.55833333333e-07', '5.59027777778e-07',
            '5.60625e-07', '5.62222222222e-07', '5.65416666667e-07',
            '5.678125e-07', '5.68611111111e-07', '5.71805555556e-07',
            '5.75e-07', '5.78194444444e-07', '5.81388888889e-07',
            '5.821875e-07', '5.84583333333e-07', '5.87777777778e-07',
            '5.89375e-07', '5.90972222222e-07', '5.94166666667e-07',
            '5.965625e-07', '5.97361111111e-07', '6.00555555556e-07',
            '6.0375e-07'
        ]
        lam_occs = [
            prefix + 'occ_lam' + s + 'theta6.69polp_' for s in lam_occs
        ]
        # find nearest matching FPM wavelength
        wlam = (np.abs(lambda_m - np.array(lam_occ))).argmin()
        occulter_file_r = lam_occs[wlam] + 'real.fits'
        occulter_file_i = lam_occs[wlam] + 'imag.fits'
        n_default = 1024  # gridsize in non-critical areas
        if use_fpm == 1:
            n_to_fpm = 2048
        else:
            n_to_fpm = 1024
        n_from_lyotstop = 1024
        field_stop_radius_lam0 = 9.0
    elif cor_type == 'hlc_erkin':
        is_hlc = True
        file_directory = data_dir + '/hlc_20190206_v3/'  # must have trailing "/"
        prefix = file_directory + 'dsn17d_run2_pup310_fpm2048_'
        pupil_diam_pix = 310.0
        pupil_file = prefix + 'pupil.fits'
        lyot_stop_file = prefix + 'lyot.fits'
        lambda0_m = 0.575e-6
        lam_occ = [
            5.4625e-07, 5.4944e-07, 5.5264e-07, 5.5583e-07, 5.5903e-07,
            5.6222e-07, 5.6542e-07, 5.6861e-07, 5.7181e-07, 5.75e-07,
            5.7819e-07, 5.8139e-07, 5.8458e-07, 5.8778e-07, 5.9097e-07,
            5.9417e-07, 5.9736e-07, 6.0056e-07, 6.0375e-07
        ]
        lam_occs = [
            '5.4625e-07', '5.4944e-07', '5.5264e-07', '5.5583e-07',
            '5.5903e-07', '5.6222e-07', '5.6542e-07', '5.6861e-07',
            '5.7181e-07', '5.75e-07', '5.7819e-07', '5.8139e-07', '5.8458e-07',
            '5.8778e-07', '5.9097e-07', '5.9417e-07', '5.9736e-07',
            '6.0056e-07', '6.0375e-07'
        ]
        lam_occs = [
            prefix + 'occ_lam' + s + 'theta6.69pols_' for s in lam_occs
        ]
        # find nearest matching FPM wavelength
        wlam = (np.abs(lambda_m - np.array(lam_occ))).argmin()
        occulter_file_r = lam_occs[wlam] + 'real_rotated.fits'
        occulter_file_i = lam_occs[wlam] + 'imag_rotated.fits'
        n_default = 1024  # gridsize in non-critical areas
        if use_fpm == 1:
            n_to_fpm = 2048
        else:
            n_to_fpm = 1024
        n_from_lyotstop = 1024
        field_stop_radius_lam0 = 9.0
    elif cor_type == 'spc-ifs_short' or cor_type == 'spc-ifs_long' or cor_type == 'spc-spec_short' or cor_type == 'spc-spec_long':
        is_spc = True
        file_dir = data_dir + '/spc_20190130/'  # must have trailing "/"
        pupil_diam_pix = 1000.0
        pupil_file = file_dir + 'pupil_SPC-20190130_rotated.fits'
        pupil_mask_file = file_dir + 'SPM_SPC-20190130.fits'
        fpm_file = file_dir + 'fpm_0.05lamdivD.fits'
        fpm_sampling = 0.05  # sampling in fpm_sampling_lambda_m/D of FPM mask
        if cor_type == 'spc-ifs_short' or cor_type == 'spc-spec_short':
            fpm_sampling_lambda_m = 0.66e-6
            lambda0_m = 0.66e-6
        else:
            fpm_sampling_lambda_m = 0.73e-6
            lambda0_m = 0.73e-6  # FPM scaled for this central wavelength
        lyot_stop_file = file_dir + 'LS_SPC-20190130.fits'
        n_default = 2048  # gridsize in non-critical areas
        n_to_fpm = 2048  # gridsize to/from FPM
        n_mft = 1400  # gridsize to FPM (propagation to/from FPM handled by MFT)
        n_from_lyotstop = 4096
    elif cor_type == 'spc-wide':
        is_spc = True
        file_dir = data_dir + '/spc_20181220/'  # must have trailing "/"
        pupil_diam_pix = 1000.0
        pupil_file = file_dir + 'pupil_SPC-20181220_1k_rotated.fits'
        pupil_mask_file = file_dir + 'SPM_SPC-20181220_1000_rounded9_gray.fits'
        fpm_file = file_dir + 'fpm_0.05lamdivD.fits'
        fpm_sampling = 0.05  # sampling in lambda0/D of FPM mask
        fpm_sampling_lambda_m = 0.825e-6
        lambda0_m = 0.825e-6  # FPM scaled for this central wavelength
        lyot_stop_file = file_dir + 'LS_SPC-20181220_1k.fits'
        n_default = 2048  # gridsize in non-critical areas
        n_to_fpm = 2048  # gridsize to/from FPM
        n_mft = 1400
        n_from_lyotstop = 4096
    elif cor_type == 'none':
        file_directory = data_dir + '/hlc_20190210/'  # must have trailing "/"
        prefix = file_directory + 'run461_'
        pupil_diam_pix = 309.0
        pupil_file = prefix + 'pupil_rotated.fits'
        lambda0_m = 0.575e-6
        use_fpm = 0
        use_lyot_stop = 0
        use_field_stop = 0
        n_default = 1024
        n_to_fpm = 1024
        n_from_lyotstop = 1024
    else:
        raise Exception('ERROR: Unsupported cor_type: ' + cor_type)

    if 'PASSVALUE' in locals():
        if 'lam0' in PASSVALUE: lamba0_m = PASSVALUE['lam0'] * 1.0e-6
        if 'lambda0_m' in PASSVALUE: lambda0_m = PASSVALUE['lambda0_m']
        mas_per_lamD = lambda0_m * 360.0 * 3600.0 / (
            2 * np.pi * 2.363) * 1000  # mas per lambda0/D
        if 'source_x_offset' in PASSVALUE:
            source_x_offset = PASSVALUE['source_x_offset']
        if 'source_y_offset' in PASSVALUE:
            source_y_offset = PASSVALUE['source_y_offset']
        if 'source_x_offset_mas' in PASSVALUE:
            source_x_offset = PASSVALUE['source_x_offset_mas'] / mas_per_lamD
        if 'source_y_offset_mas' in PASSVALUE:
            source_y_offset = PASSVALUE['source_y_offset_mas'] / mas_per_lamD
        if 'use_errors' in PASSVALUE: use_errors = PASSVALUE['use_errors']
        if 'polaxis' in PASSVALUE: polaxis = PASSVALUE['polaxis']
        if 'zindex' in PASSVALUE: zindex = np.array(PASSVALUE['zindex'])
        if 'zval_m' in PASSVALUE: zval_m = np.array(PASSVALUE['zval_m'])
        if 'end_at_fsm' in PASSVALUE: end_at_fsm = PASSVALUE['end_at_fsm']
        if 'cgi_x_shift_pupdiam' in PASSVALUE:
            cgi_x_shift_pupdiam = PASSVALUE['cgi_x_shift_pupdiam']
        if 'cgi_y_shift_pupdiam' in PASSVALUE:
            cgi_y_shift_pupdiam = PASSVALUE['cgi_y_shift_pupdiam']
        if 'cgi_x_shift_m' in PASSVALUE:
            cgi_x_shift_m = PASSVALUE['cgi_x_shift_m']
        if 'cgi_y_shift_m' in PASSVALUE:
            cgi_y_shift_m = PASSVALUE['cgi_y_shift_m']
        if 'fsm_x_offset' in PASSVALUE:
            fsm_x_offset = PASSVALUE['fsm_x_offset']
        if 'fsm_y_offset' in PASSVALUE:
            fsm_y_offset = PASSVALUE['fsm_y_offset']
        if 'fsm_x_offset_mas' in PASSVALUE:
            fsm_x_offset = PASSVALUE['fsm_x_offset_mas'] / mas_per_lamD
        if 'fsm_y_offset_mas' in PASSVALUE:
            fsm_y_offset = PASSVALUE['fsm_y_offset_mas'] / mas_per_lamD
        if 'focm_z_shift_m' in PASSVALUE:
            focm_z_shift_m = PASSVALUE['focm_z_shift_m']
        if 'use_hlc_dm_patterns' in PASSVALUE:
            use_hlc_dm_patterns = PASSVALUE['use_hlc_dm_patterns']
        if 'use_dm1' in PASSVALUE: use_dm1 = PASSVALUE['use_dm1']
        if 'dm1_m' in PASSVALUE: dm1_m = PASSVALUE['dm1_m']
        if 'dm1_xc_act' in PASSVALUE: dm1_xc_act = PASSVALUE['dm1_xc_act']
        if 'dm1_yc_act' in PASSVALUE: dm1_yc_act = PASSVALUE['dm1_yc_act']
        if 'dm1_xtilt_deg' in PASSVALUE:
            dm1_xtilt_deg = PASSVALUE['dm1_xtilt_deg']
        if 'dm1_ytilt_deg' in PASSVALUE:
            dm1_ytilt_deg = PASSVALUE['dm1_ytilt_deg']
        if 'dm1_ztilt_deg' in PASSVALUE:
            dm1_ztilt_deg = PASSVALUE['dm1_ztilt_deg']
        if 'use_dm2' in PASSVALUE: use_dm2 = PASSVALUE['use_dm2']
        if 'dm2_m' in PASSVALUE: dm2_m = PASSVALUE['dm2_m']
        if 'dm2_xc_act' in PASSVALUE: dm2_xc_act = PASSVALUE['dm2_xc_act']
        if 'dm2_yc_act' in PASSVALUE: dm2_yc_act = PASSVALUE['dm2_yc_act']
        if 'dm2_xtilt_deg' in PASSVALUE:
            dm2_xtilt_deg = PASSVALUE['dm2_xtilt_deg']
        if 'dm2_ytilt_deg' in PASSVALUE:
            dm2_ytilt_deg = PASSVALUE['dm2_ytilt_deg']
        if 'dm2_ztilt_deg' in PASSVALUE:
            dm2_ztilt_deg = PASSVALUE['dm2_ztilt_deg']
        if 'use_pupil_mask' in PASSVALUE:
            use_pupil_mask = PASSVALUE['use_pupil_mask']
        if 'mask_x_shift_pupdiam' in PASSVALUE:
            mask_x_shift_pupdiam = PASSVALUE['mask_x_shift_pupdiam']
        if 'mask_y_shift_pupdiam' in PASSVALUE:
            mask_y_shift_pupdiam = PASSVALUE['mask_y_shift_pupdiam']
        if 'mask_x_shift_m' in PASSVALUE:
            mask_x_shift_m = PASSVALUE['mask_x_shift_m']
        if 'mask_y_shift_m' in PASSVALUE:
            mask_y_shift_m = PASSVALUE['mask_y_shift_m']
        if 'fpm_x_offset' in PASSVALUE:
            fpm_x_offset = PASSVALUE['fpm_x_offset']
        if 'fpm_y_offset' in PASSVALUE:
            fpm_y_offset = PASSVALUE['fpm_y_offset']
        if 'fpm_x_offset_m' in PASSVALUE:
            fpm_x_offset_m = PASSVALUE['fpm_x_offset_m']
        if 'fpm_y_offset_m' in PASSVALUE:
            fpm_y_offset_m = PASSVALUE['fpm_y_offset_m']
        if 'fpm_z_shift_m' in PASSVALUE:
            fpm_z_shift_m = PASSVALUE['fpm_z_shift_m']
        if 'pinhole_diam_m' in PASSVALUE:
            pinhole_diam_m = PASSVALUE['pinhole_diam_m']
        if 'end_at_fpm_exit_pupil' in PASSVALUE:
            end_at_fpm_exit_pupil = PASSVALUE['end_at_fpm_exit_pupil']
        if 'output_field_rootname' in PASSVALUE:
            output_field_rootname = PASSVALUE['output_field_rootname']
        if 'use_lyot_stop' in PASSVALUE:
            use_lyot_stop = PASSVALUE['use_lyot_stop']
        if 'lyot_x_shift_pupdiam' in PASSVALUE:
            lyot_x_shift_pupdiam = PASSVALUE['lyot_x_shift_pupdiam']
        if 'lyot_y_shift_pupdiam' in PASSVALUE:
            lyot_y_shift_pupdiam = PASSVALUE['lyot_y_shift_pupdiam']
        if 'lyot_x_shift_m' in PASSVALUE:
            lyot_x_shift_m = PASSVALUE['lyot_x_shift_m']
        if 'lyot_y_shift_m' in PASSVALUE:
            lyot_y_shift_m = PASSVALUE['lyot_y_shift_m']
        if 'use_field_stop' in PASSVALUE:
            use_field_stop = PASSVALUE['use_field_stop']
        if 'field_stop_x_offset' in PASSVALUE:
            field_stop_x_offset = PASSVALUE['field_stop_x_offset']
        if 'field_stop_y_offset' in PASSVALUE:
            field_stop_y_offset = PASSVALUE['field_stop_y_offset']
        if 'field_stop_x_offset_m' in PASSVALUE:
            field_stop_x_offset_m = PASSVALUE['field_stop_x_offset_m']
        if 'field_stop_y_offset_m' in PASSVALUE:
            field_stop_y_offset_m = PASSVALUE['field_stop_y_offset_m']
        if 'use_pupil_lens' in PASSVALUE:
            use_pupil_lens = PASSVALUE['use_pupil_lens']
        if 'use_defocus_lens' in PASSVALUE:
            use_defocus_lens = PASSVALUE['use_defocus_lens']
        if 'defocus' in PASSVALUE: defocus = PASSVALUE['defocus']
        if 'output_dim' in PASSVALUE: output_dim = PASSVALUE['output_dim']
        if 'final_sampling_m' in PASSVALUE:
            final_sampling_m = PASSVALUE['final_sampling_m']
        if 'final_sampling_lam0' in PASSVALUE:
            final_sampling_lam0 = PASSVALUE['final_sampling_lam0']

    diam = 2.3633372
    fl_pri = 2.83459423440 * 1.0013
    d_pri_sec = 2.285150515460035
    d_focus_sec = d_pri_sec - fl_pri
    fl_sec = -0.653933011 * 1.0004095
    d_sec_focus = 3.580188916677103
    diam_sec = 0.58166
    d_sec_fold1 = 2.993753476654728
    d_fold1_focus = 0.586435440022375
    diam_fold1 = 0.09
    d_fold1_m3 = 1.680935841598811
    fl_m3 = 0.430216463069001
    d_focus_m3 = 1.094500401576436
    d_m3_pupil = 0.469156807701977
    d_m3_focus = 0.708841602661368
    diam_m3 = 0.2
    d_m3_m4 = 0.943514749358944
    fl_m4 = 0.116239114833590
    d_focus_m4 = 0.234673014520402
    d_m4_pupil = 0.474357941656967
    d_m4_focus = 0.230324117970585
    diam_m4 = 0.07
    d_m4_m5 = 0.429145636743193
    d_m5_focus = 0.198821518772608
    fl_m5 = 0.198821518772608
    d_m5_pupil = 0.716529242882632
    diam_m5 = 0.07
    d_m5_fold2 = 0.351125431220770
    diam_fold2 = 0.06
    d_fold2_fsm = 0.365403811661862
    d_fsm_oap1 = 0.354826767220001
    fl_oap1 = 0.503331895563883
    diam_oap1 = 0.06
    d_oap1_focm = 0.768005607094041
    d_focm_oap2 = 0.314483210543378
    fl_oap2 = 0.579156922073536
    diam_oap2 = 0.06
    d_oap2_dm1 = 0.775775726154228
    d_dm1_dm2 = 1.0
    d_dm2_oap3 = 0.394833855161549
    fl_oap3 = 1.217276467668519
    diam_oap3 = 0.06
    d_oap3_fold3 = 0.505329955078121
    diam_fold3 = 0.06
    d_fold3_oap4 = 1.158897671642761
    fl_oap4 = 0.446951159052363
    diam_oap4 = 0.06
    d_oap4_pupilmask = 0.423013568764728
    d_pupilmask_oap5 = 0.408810648253099
    fl_oap5 = 0.548189351937178
    diam_oap5 = 0.06
    d_oap5_fpm = 0.548189083164429
    d_fpm_oap6 = 0.548189083164429
    fl_oap6 = 0.548189083164429
    diam_oap6 = 0.06
    d_oap6_lyotstop = 0.687567667550736
    d_lyotstop_oap7 = 0.401748843470518
    fl_oap7 = 0.708251083480054
    diam_oap7 = 0.06
    d_oap7_fieldstop = 0.708251083480054
    d_fieldstop_oap8 = 0.210985967281651
    fl_oap8 = 0.210985967281651
    diam_oap8 = 0.06
    d_oap8_pupil = 0.238185804200797
    d_oap8_filter = 0.368452268225530
    diam_filter = 0.01
    d_filter_lens = 0.170799548215162
    fl_lens = 0.246017378417573 + 0.050001306014153
    diam_lens = 0.01
    d_lens_fold4 = 0.246017378417573
    diam_fold4 = 0.02
    d_fold4_image = 0.050001578514650
    fl_pupillens = 0.149260576823040

    n = n_default  # start off with less padding

    wavefront = proper.prop_begin(diam, lambda_m, n, float(pupil_diam_pix) / n)
    pupil = proper.prop_fits_read(pupil_file)
    proper.prop_multiply(wavefront, trim(pupil, n))
    pupil = 0
    if polaxis != 0: polmap(wavefront, polfile, pupil_diam_pix, polaxis)
    proper.prop_define_entrance(wavefront)
    proper.prop_lens(wavefront, fl_pri)
    if source_x_offset != 0 or source_y_offset != 0:
        # compute tilted wavefront to offset source by xoffset,yoffset lambda0_m/D
        xtilt_lam = -source_x_offset * lambda0_m / lambda_m
        ytilt_lam = -source_y_offset * lambda0_m / lambda_m
        x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1))
        y = np.transpose(x)
        proper.prop_multiply(
            wavefront,
            np.exp(complex(0, 1) * np.pi * (xtilt_lam * x + ytilt_lam * y)))
        x = 0
        y = 0
    if zindex[0] != 0: proper.prop_zernikes(wavefront, zindex, zval_m)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_PRIMARY_phase_error_V1.0.fits',
                             WAVEFRONT=True)
        proper.prop_errormap(
            wavefront,
            map_dir +
            'wfirst_phaseb_GROUND_TO_ORBIT_4.2X_phase_error_V1.0.fits',
            WAVEFRONT=True)

    proper.prop_propagate(wavefront, d_pri_sec, 'secondary')
    proper.prop_lens(wavefront, fl_sec)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_SECONDARY_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_sec / 2.0)

    proper.prop_propagate(wavefront, d_sec_fold1, 'FOLD_1')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOLD1_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fold1 / 2.0)

    proper.prop_propagate(wavefront, d_fold1_m3, 'M3')
    proper.prop_lens(wavefront, fl_m3)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_M3_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_m3 / 2.0)

    proper.prop_propagate(wavefront, d_m3_m4, 'M4')
    proper.prop_lens(wavefront, fl_m4)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_M4_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_m4 / 2.0)

    proper.prop_propagate(wavefront, d_m4_m5, 'M5')
    proper.prop_lens(wavefront, fl_m5)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_M5_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_m5 / 2.0)

    proper.prop_propagate(wavefront, d_m5_fold2, 'FOLD_2')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOLD2_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fold2 / 2.0)

    proper.prop_propagate(wavefront, d_fold2_fsm, 'FSM')
    if end_at_fsm == 1:
        (wavefront, sampling_m) = proper.prop_end(wavefront, NOABS=True)
        wavefront = trim(wavefront, n)
        return wavefront, sampling_m
    if cgi_x_shift_pupdiam != 0 or cgi_y_shift_pupdiam != 0 or cgi_x_shift_m != 0 or cgi_y_shift_m != 0:  # bulk coronagraph pupil shear
        # FFT the field, apply a tilt, FFT back
        if cgi_x_shift_pupdiam != 0 or cgi_y_shift_pupdiam != 0:
            # offsets are normalized to pupil diameter
            xt = -cgi_x_shift_pupdiam * pupil_diam_pix * float(
                pupil_diam_pix) / n
            yt = -cgi_y_shift_pupdiam * pupil_diam_pix * float(
                pupil_diam_pix) / n
        else:
            # offsets are meters
            d_m = proper.prop_get_sampling(wavefront)
            xt = -cgi_x_shift_m / d_m * float(pupil_diam_pix) / n
            yt = -cgi_y_shift_m / d_m * float(pupil_diam_pix) / n
        x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1))
        y = np.transpose(x)
        tilt = complex(0, 1) * np.pi * (x * xt + y * yt)
        x = 0
        y = 0
        wavefront0 = proper.prop_get_wavefront(wavefront)
        wavefront0 = ffts(wavefront0, -1)
        wavefront0 *= np.exp(tilt)
        wavefront0 = ffts(wavefront0, 1)
        tilt = 0
        wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
        wavefront0 = 0
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FSM_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fsm / 2.0)
    if (fsm_x_offset != 0.0 or fsm_y_offset != 0.0):
        # compute tilted wavefront to offset source by fsm_x_offset,fsm_y_offset lambda0_m/D
        xtilt_lam = fsm_x_offset * lambda0_m / lambda_m
        ytilt_lam = fsm_y_offset * lambda0_m / lambda_m
        x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1))
        y = np.transpose(x)
        proper.prop_multiply(
            wavefront,
            np.exp(complex(0, 1) * np.pi * (xtilt_lam * x + ytilt_lam * y)))
        x = 0
        y = 0

    proper.prop_propagate(wavefront, d_fsm_oap1, 'OAP1')
    proper.prop_lens(wavefront, fl_oap1)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP1_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap1 / 2.0)

    proper.prop_propagate(wavefront, d_oap1_focm + focm_z_shift_m, 'FOCM')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOCM_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_focm / 2.0)

    proper.prop_propagate(wavefront, d_focm_oap2 + focm_z_shift_m, 'OAP2')
    proper.prop_lens(wavefront, fl_oap2)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP2_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap2 / 2.0)

    proper.prop_propagate(wavefront, d_oap2_dm1, 'DM1')
    if use_dm1 != 0:
        proper.prop_dm(wavefront,
                       dm1_m,
                       dm1_xc_act,
                       dm1_yc_act,
                       dm_sampling_m,
                       XTILT=dm1_xtilt_deg,
                       YTILT=dm1_ytilt_deg,
                       ZTILT=dm1_ztilt_deg)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_DM1_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if is_hlc == True and use_hlc_dm_patterns == 1:
        dm1wfe = proper.prop_fits_read(prefix + 'dm1wfe.fits')
        proper.prop_add_phase(wavefront, trim(dm1wfe, n))
        dm1wfe = 0

    proper.prop_propagate(wavefront, d_dm1_dm2, 'DM2')
    if use_dm2 == 1:
        proper.prop_dm(wavefront,
                       dm2_m,
                       dm2_xc_act,
                       dm2_yc_act,
                       dm_sampling_m,
                       XTILT=dm2_xtilt_deg,
                       YTILT=dm2_ytilt_deg,
                       ZTILT=dm2_ztilt_deg)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_DM2_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if is_hlc == True:
        if use_hlc_dm_patterns == 1:
            dm2wfe = proper.prop_fits_read(prefix + 'dm2wfe.fits')
            proper.prop_add_phase(wavefront, trim(dm2wfe, n))
            dm2wfe = 0
        dm2mask = proper.prop_fits_read(prefix + 'dm2mask.fits')
        proper.prop_multiply(wavefront, trim(dm2mask, n))
        dm2mask = 0

    proper.prop_propagate(wavefront, d_dm2_oap3, 'OAP3')
    proper.prop_lens(wavefront, fl_oap3)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP3_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap3 / 2.0)

    proper.prop_propagate(wavefront, d_oap3_fold3, 'FOLD_3')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOLD3_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fold3 / 2.0)

    proper.prop_propagate(wavefront, d_fold3_oap4, 'OAP4')
    proper.prop_lens(wavefront, fl_oap4)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP4_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap4 / 2.0)

    proper.prop_propagate(wavefront, d_oap4_pupilmask,
                          'PUPIL_MASK')  # flat/reflective shaped pupil
    if is_spc == True and use_pupil_mask != 0:
        pupil_mask = proper.prop_fits_read(pupil_mask_file)
        pupil_mask = trim(pupil_mask, n)
        if mask_x_shift_pupdiam != 0 or mask_y_shift_pupdiam != 0 or mask_x_shift_m != 0 or mask_y_shift_m != 0:
            # shift SP mask by FFTing it, applying tilt, and FFTing back
            if mask_x_shift_pupdiam != 0 or mask_y_shift_pupdiam != 0:
                # offsets are normalized to pupil diameter
                xt = -mask_x_shift_pupdiam * pupil_diam_pix * float(
                    pupil_diam_pix) / n
                yt = -mask_y_shift_pupdiam * pupil_diam_pix * float(
                    pupil_diam_pix) / n
            else:
                d_m = proper.prop_get_sampling(wavefront)
                xt = -mask_x_shift_m / d_m * float(pupil_diam_pix) / n
                yt = -mask_y_shift_m / d_m * float(pupil_diam_pix) / n
            x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0),
                        (n, 1))
            y = np.transpose(x)
            tilt = complex(0, 1) * np.pi * (x * xt + y * yt)
            x = 0
            y = 0
            pupil_mask = ffts(pupil_mask, -1)
            pupil_mask *= np.exp(tilt)
            pupil_mask = ffts(pupil_mask, 1)
            pupil_mask = pupil_mask.real
            tilt = 0
        proper.prop_multiply(wavefront, pupil_mask)
        pupil_mask = 0
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_PUPILMASK_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    # while at a pupil, use more padding to provide 2x better sampling at FPM
    diam = 2 * proper.prop_get_beamradius(wavefront)
    (wavefront, dx) = proper.prop_end(wavefront, NOABS=True)
    n = n_to_fpm
    wavefront0 = trim(wavefront, n)
    wavefront = proper.prop_begin(diam, lambda_m, n, float(pupil_diam_pix) / n)
    wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
    wavefront0 = 0

    proper.prop_propagate(wavefront, d_pupilmask_oap5, 'OAP5')
    proper.prop_lens(wavefront, fl_oap5)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP5_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap5 / 2.0)

    proper.prop_propagate(wavefront,
                          d_oap5_fpm + fpm_z_shift_m,
                          'FPM',
                          TO_PLANE=True)
    if use_fpm == 1:
        if fpm_x_offset != 0 or fpm_y_offset != 0 or fpm_x_offset_m != 0 or fpm_y_offset_m != 0:
            # To shift FPM, FFT field to pupil, apply tilt, FFT back to focus,
            # apply FPM, FFT to pupil, take out tilt, FFT back to focus
            if fpm_x_offset != 0 or fpm_y_offset != 0:
                # shifts are specified in lambda0/D
                x_offset_lamD = fpm_x_offset * lambda0_m / lambda_m
                y_offset_lamD = fpm_y_offset * lambda0_m / lambda_m
            else:
                d_m = proper.prop_get_sampling(wavefront)
                x_offset_lamD = fpm_x_offset_m / d_m * float(
                    pupil_diam_pix) / n
                y_offset_lamD = fpm_y_offset_m / d_m * float(
                    pupil_diam_pix) / n
            x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0),
                        (n, 1))
            y = np.transpose(x)
            tilt = complex(0,
                           1) * np.pi * (x * x_offset_lamD + y * y_offset_lamD)
            x = 0
            y = 0
            wavefront0 = proper.prop_get_wavefront(wavefront)
            wavefront0 = ffts(wavefront0, -1)
            wavefront0 *= np.exp(tilt)
            wavefront0 = ffts(wavefront0, 1)
            wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
            wavefront0 = 0
        if is_hlc == True:
            occ_r = proper.prop_fits_read(occulter_file_r)
            occ_i = proper.prop_fits_read(occulter_file_i)
            occ = np.array(occ_r + 1j * occ_i, dtype=np.complex128)
            proper.prop_multiply(wavefront, trim(occ, n))
            occ_r = 0
            occ_i = 0
            occ = 0
        elif is_spc == True:
            # super-sample FPM
            wavefront0 = proper.prop_get_wavefront(wavefront)
            wavefront0 = ffts(wavefront0, 1)  # to virtual pupil
            wavefront0 = trim(wavefront0, n_mft)
            fpm = proper.prop_fits_read(fpm_file)
            nfpm = fpm.shape[1]
            fpm_sampling_lam = fpm_sampling * fpm_sampling_lambda_m / lambda_m
            wavefront0 = mft2(wavefront0, fpm_sampling_lam, pupil_diam_pix,
                              nfpm, -1)  # MFT to highly-sampled focal plane
            wavefront0 *= fpm
            fpm = 0
            wavefront0 = mft2(wavefront0, fpm_sampling_lam, pupil_diam_pix, n,
                              +1)  # MFT to virtual pupil
            wavefront0 = ffts(wavefront0,
                              -1)  # back to normally-sampled focal plane
            wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
            wavefront0 = 0
        if fpm_x_offset != 0 or fpm_y_offset != 0 or fpm_x_offset_m != 0 or fpm_y_offset_m != 0:
            wavefront0 = proper.prop_get_wavefront(wavefront)
            wavefront0 = ffts(wavefront0, -1)
            wavefront0 *= np.exp(-tilt)
            wavefront0 = ffts(wavefront0, 1)
            wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
            wavefront0 = 0
            tilt = 0
    if pinhole_diam_m != 0:
        # "pinhole_diam_m" is pinhole diameter in meters
        dx_m = proper.prop_get_sampling(wavefront)
        dx_pinhole_diam_m = pinhole_diam_m / 101.0  # 101 samples across pinhole
        n_out = 105
        m_per_lamD = dx_m * n / float(
            pupil_diam_pix)  # current focal plane sampling in lambda_m/D
        dx_pinhole_lamD = dx_pinhole_diam_m / m_per_lamD  # pinhole sampling in lambda_m/D
        n_in = int(round(pupil_diam_pix * 1.2))
        wavefront0 = proper.prop_get_wavefront(wavefront)
        wavefront0 = ffts(wavefront0, +1)  # to virtual pupil
        wavefront0 = trim(wavefront0, n_in)
        m = dx_pinhole_lamD * n_in * float(n_out) / pupil_diam_pix
        wavefront0 = mft2(wavefront0, dx_pinhole_lamD, pupil_diam_pix, n_out,
                          -1)  # MFT to highly-sampled focal plane
        p = (radius(n_out) * dx_pinhole_diam_m) <= (pinhole_diam_m / 2.0)
        p = p.astype(np.int)
        wavefront0 *= p
        p = 0
        wavefront0 = mft2(wavefront0, dx_pinhole_lamD, pupil_diam_pix, n,
                          +1)  # MFT back to virtual pupil
        wavefront0 = ffts(wavefront0,
                          -1)  # back to normally-sampled focal plane
        wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
        wavefront0 = 0

    proper.prop_propagate(wavefront, d_fpm_oap6 - fpm_z_shift_m, 'OAP6')
    proper.prop_lens(wavefront, fl_oap6)
    if use_errors != 0 and end_at_fpm_exit_pupil == 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP6_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap6 / 2.0)

    proper.prop_propagate(wavefront, d_oap6_lyotstop, 'LYOT_STOP')
    # while at a pupil, switch back to less padding
    diam = 2 * proper.prop_get_beamradius(wavefront)
    (wavefront, dx) = proper.prop_end(wavefront, NOABS=True)
    n = n_from_lyotstop
    wavefront = trim(wavefront, n)
    if output_field_rootname != '':
        lams = format(lambda_m * 1e6, "6.4f")
        pols = format(int(round(polaxis)))
        hdu = pyfits.PrimaryHDU()
        hdu.data = np.real(wavefront)
        hdu.writeto(output_field_rootname + '_' + lams + 'um_' + pols +
                    '_real.fits',
                    overwrite=True)
        hdu = pyfits.PrimaryHDU()
        hdu.data = np.imag(wavefront)
        hdu.writeto(output_field_rootname + '_' + lams + 'um_' + pols +
                    '_imag.fits',
                    overwrite=True)
    if end_at_fpm_exit_pupil == 1:
        return wavefront, dx
    wavefront0 = wavefront.copy()
    wavefront = 0
    wavefront = proper.prop_begin(diam, lambda_m, n, float(pupil_diam_pix) / n)
    wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
    wavefront0 = 0

    if use_lyot_stop != 0:
        lyot = proper.prop_fits_read(lyot_stop_file)
        lyot = trim(lyot, n)
        if lyot_x_shift_pupdiam != 0 or lyot_y_shift_pupdiam != 0 or lyot_x_shift_m != 0 or lyot_y_shift_m != 0:
            # apply shift to lyot stop by FFTing the stop, applying a tilt, and FFTing back
            if lyot_x_shift_pupdiam != 0 or lyot_y_shift_pupdiam != 0:
                # offsets are normalized to pupil diameter
                xt = -lyot_x_shift_pupdiam * pupil_diam_pix * float(
                    pupil_diam_pix) / n
                yt = -lyot_y_shift_pupdiam * pupil_diam_pix * float(
                    pupil_diam_pix) / n
            else:
                d_m = proper.prop_get_sampling(wavefront)
                xt = -lyot_x_shift_m / d_m * float(pupil_diam_pix) / n
                yt = -lyot_y_shift_m / d_m * float(pupil_diam_pix) / n
            x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0),
                        (n, 1))
            y = np.transpose(x)
            tilt = complex(0, 1) * np.pi * (x * xt + y * yt)
            x = 0
            y = 0
            lyot = ffts(lyot, -1)
            lyot *= np.exp(tilt)
            lyot = ffts(lyot, 1)
            lyot = lyot.real
            tilt = 0
        proper.prop_multiply(wavefront, lyot)
        lyot = 0
    if use_pupil_lens != 0 or pinhole_diam_m != 0:
        proper.prop_circular_aperture(wavefront, 1.1, NORM=True)

    proper.prop_propagate(wavefront, d_lyotstop_oap7, 'OAP7')
    proper.prop_lens(wavefront, fl_oap7)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP7_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap7 / 2.0)

    proper.prop_propagate(wavefront, d_oap7_fieldstop, 'FIELD_STOP')
    if use_field_stop != 0 and (cor_type == 'hlc' or cor_type == 'hlc_erkin'):
        sampling_lamD = float(
            pupil_diam_pix) / n  # sampling at focus in lambda_m/D
        stop_radius = field_stop_radius_lam0 / sampling_lamD * (
            lambda0_m / lambda_m) * proper.prop_get_sampling(wavefront)
        if field_stop_x_offset != 0 or field_stop_y_offset != 0:
            # convert offsets in lambda0/D to meters
            x_offset_lamD = field_stop_x_offset * lambda0_m / lambda_m
            y_offset_lamD = field_stop_y_offset * lambda0_m / lambda_m
            pupil_ratio = float(pupil_diam_pix) / n
            field_stop_x_offset_m = x_offset_lamD / pupil_ratio * proper.prop_get_sampling(
                wavefront)
            field_stop_y_offset_m = y_offset_lamD / pupil_ratio * proper.prop_get_sampling(
                wavefront)
        proper.prop_circular_aperture(wavefront, stop_radius,
                                      -field_stop_x_offset_m,
                                      -field_stop_y_offset_m)

    proper.prop_propagate(wavefront, d_fieldstop_oap8, 'OAP8')
    proper.prop_lens(wavefront, fl_oap8)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP8_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap8 / 2.0)

    proper.prop_propagate(wavefront, d_oap8_filter, 'filter')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FILTER_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_filter / 2.0)

    proper.prop_propagate(wavefront, d_filter_lens, 'LENS')
    if use_pupil_lens == 0 and use_defocus_lens == 0 and defocus == 0:
        # use imaging lens to create normal focus
        proper.prop_lens(wavefront, fl_lens)
        if use_errors != 0:
            proper.prop_errormap(wavefront,
                                 map_dir +
                                 'wfirst_phaseb_LENS_phase_error_V1.0.fits',
                                 WAVEFRONT=True)
    elif use_pupil_lens != 0:
        # use pupil imaging lens
        proper.prop_lens(wavefront, fl_pupillens)
        if use_errors != 0:
            proper.prop_errormap(
                wavefront,
                map_dir + 'wfirst_phaseb_PUPILLENS_phase_error_V1.0.fits',
                WAVEFRONT=True)
    else:
        # table is waves P-V @ 575 nm
        z4_pv_waves = np.array([
            -9.0545, -8.5543, -8.3550, -8.0300, -7.54500, -7.03350, -6.03300,
            -5.03300, -4.02000, -2.51980, 0.00000000, 3.028000, 4.95000,
            6.353600, 8.030000, 10.10500, 12.06000, 14.06000, 20.26000,
            28.34000, 40.77500, 56.65700
        ])
        fl_defocus_lens = np.array([
            5.09118, 1.89323, 1.54206, 1.21198, 0.914799, 0.743569, 0.567599,
            0.470213, 0.406973, 0.350755, 0.29601868, 0.260092, 0.24516,
            0.236606, 0.228181, 0.219748, 0.213278, 0.207816, 0.195536,
            0.185600, 0.176629, 0.169984
        ])
        # subtract ad-hoc function to make z4 vs f_length more accurately spline interpolatible
        f = fl_defocus_lens / 0.005
        f0 = 59.203738
        z4t = z4_pv_waves - (0.005 * (f0 - f - 40)) / f**2 / 0.575e-6
        if use_defocus_lens != 0:
            # use one of 4 defocusing lenses
            defocus = np.array([18.0, 9.0, -4.0, -8.0])  # waves P-V @ 575 nm
            f = interp1d(z4_pv_waves, z4t, kind='cubic')
            z4x = f(defocus)
            f = interp1d(z4t, fl_defocus_lens, kind='cubic')
            lens_fl = f(z4x)
            proper.prop_lens(wavefront, lens_fl[use_defocus_lens - 1])
            if use_errors != 0:
                proper.prop_errormap(wavefront,
                                     map_dir + 'wfirst_phaseb_DEFOCUSLENS' +
                                     str(use_defocus_lens) +
                                     '_phase_error_V1.0.fits',
                                     WAVEFRONT=True)
            defocus = defocus[use_defocus_lens - 1]
        else:
            # specify amount of defocus (P-V waves @ 575 nm)
            f = interp1d(z4_pv_waves, z4t, kind='cubic')
            z4x = f(defocus)
            f = interp1d(z4t, fl_defocus_lens, kind='cubic')
            lens_fl = f(z4x)
            proper.prop_lens(wavefront, lens_fl)
            if use_errors != 0:
                proper.prop_errormap(
                    wavefront,
                    map_dir +
                    'wfirst_phaseb_DEFOCUSLENS1_phase_error_V1.0.fits',
                    WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_lens / 2.0)

    proper.prop_propagate(wavefront, d_lens_fold4, 'FOLD_4')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOLD4_phase_error_V1.1.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fold4 / 2.0)

    if defocus != 0 or use_defocus_lens != 0:
        if np.abs(defocus) <= 4:
            proper.prop_propagate(wavefront,
                                  d_fold4_image,
                                  'IMAGE',
                                  TO_PLANE=True)
        else:
            proper.prop_propagate(wavefront, d_fold4_image, 'IMAGE')
    else:
        proper.prop_propagate(wavefront, d_fold4_image, 'IMAGE')

    (wavefront, sampling_m) = proper.prop_end(wavefront, NOABS=True)

    if final_sampling_lam0 != 0 or final_sampling_m != 0:
        if final_sampling_m != 0:
            mag = sampling_m / final_sampling_m
            sampling_m = final_sampling_m
        else:
            mag = (float(pupil_diam_pix) /
                   n) / final_sampling_lam0 * (lambda_m / lambda0_m)
            sampling_m = sampling_m / mag
        wavefront = proper.prop_magnify(wavefront,
                                        mag,
                                        output_dim,
                                        AMP_CONSERVE=True)
    else:
        wavefront = trim(wavefront, output_dim)

    return wavefront, sampling_m
示例#21
0
def dummy_telescope(lmda, grid_size, kwargs):
    """
    propagates instantaneous complex E-field thru Subaru from the DM through SCExAO

    uses PyPROPER3 to generate the complex E-field at the pupil plane, then propagates it through SCExAO 50x50 DM,
        then coronagraph, to the focal plane
    :returns spectral cube at instantaneous time in the focal_plane()
    """
    # print("Propagating Broadband Wavefront Through Subaru")

    # Initialize the Wavefront in Proper
    wfo = proper.prop_begin(entrance_d, lmda, grid_size, beam_ratio)

    # Defines aperture (baffle-before primary)
    proper.prop_circular_aperture(wfo, entrance_d / 2)
    proper.prop_define_entrance(wfo)  # normalizes abs intensity

    # SCExAO Reimaging 1
    proper.prop_lens(wfo, fl_SxOAPG)
    proper.prop_propagate(wfo, fl_SxOAPG * 2)  # move to second pupil

    ########################################
    # Import/Apply Actual DM Map
    # #######################################
    plot_flag = False
    if kwargs['verbose'] and kwargs['ix'] == 0:
        plot_flag = True
    dm_map = kwargs['map']
    # flat = proper.prop_zernikes(wfo, [2, 3], np.array([5, 1]))  # zernike[2,3] = x,y tilt
    # adding a tilt for shits and giggles
    # proper.prop_propagate(wfo, fl_SxOAPG)  # from tweeter-DM to OAP2
    errormap(wfo,
             dm_map,
             SAMPLING=dm_pitch,
             MIRROR_SURFACE=True,
             MICRONS=True,
             BR=beam_ratio,
             PLOT=plot_flag)  # WAVEFRONT=True
    # errormap(wfo, dm_map, SAMPLING=dm_pitch, AMPLITUDE=True, BR=beam_ratio, PLOT=plot_flag)  # WAVEFRONT=True
    # proper.prop_circular_aperture(wfo, entrance_d/2)

    if kwargs['verbose'] and kwargs['ix'] == 0:
        fig, subplot = plt.subplots(nrows=1, ncols=2, figsize=(12, 5))
        ax1, ax2 = subplot.flatten()
        fig.suptitle('SCExAO Model WFO after errormap',
                     fontweight='bold',
                     fontsize=14)
        # ax.imshow(dm_map, interpolation='none')
        ax1.imshow(np.abs(proper.prop_shift_center(wfo.wfarr))**2,
                   interpolation='none')
        ax1.set_title('Amplitude')
        ax2.imshow(np.angle(proper.prop_shift_center(wfo.wfarr)),
                   interpolation='none',
                   vmin=-2 * np.pi,
                   vmax=2 * np.pi)  # , cmap='hsv'
        ax2.set_title('Phase')
    # ------------------------------------------------
    # proper.prop_propagate(wfo, fl_SxOAPG)  # from tweeter-DM to OAP2

    # SCExAO Reimaging 2
    proper.prop_lens(wfo, fl_SxOAPG)
    proper.prop_propagate(wfo,
                          fl_SxOAPG)  # focus at exit of DM telescope system
    proper.prop_lens(wfo, fl_SxOAPG)
    proper.prop_propagate(wfo,
                          fl_SxOAPG)  # focus at exit of DM telescope system
    # ########################################
    # # Focal Plane
    # # #######################################
    # Check Sampling in focal plane
    # shifts wfo from Fourier Space (origin==lower left corner) to object space (origin==center)
    # proper.prop_shift_center(wfo.wfarr)
    # wf, samp = proper.prop_end(wfo, NoAbs=True)
    wf = proper.prop_shift_center(wfo.wfarr)
    samp = proper.prop_get_sampling(wfo)
    # smp_asec = proper.prop_get_sampling_arcsec(wfo)

    if kwargs['verbose'] and kwargs['ix'] == 0:
        fig, ax = plt.subplots(nrows=1, ncols=1)
        fig.suptitle('SCExAO Model Focal Plane',
                     fontweight='bold',
                     fontsize=14)
        ax.imshow(
            np.abs(wf)**2,
            interpolation='none',
            norm=LogNorm(
                vmin=1e-7,
                vmax=1e-2))  # np.abs(proper.prop_shift_center(wfo.wfarr))**2
    #
    # if kwargs['verbose'] and kwargs['ix']==0:
    #     print(f"\n\tFocal Plane\n"
    #           f"sampling at focal plane is {smp_asec * 1e3:.4f} mas\n"
    #           f"\tfull FOV is {smp_asec * grid_size * 1e3:.2f} mas")
    #     s_rad = proper.prop_get_sampling_radians(wfo)
    #     print(f"sampling at focal plane is {s_rad * 1e6:.6f} urad")

    # print(f"Finished simulation")

    return wf, samp
示例#22
0
def prescription_quad(wavelength, gridsize, PASSVALUE={}):
    # Assign parameters from PASSVALUE struct or use defaults
    diam = PASSVALUE.get('diam', 0.3)  # telescope diameter in meters
    m1_fl = PASSVALUE.get('m1_fl', 0.5717255)  # primary focal length (m)
    beam_ratio = PASSVALUE.get('beam_ratio',
                               0.2)  # initial beam width/grid width
    tilt_x = PASSVALUE.get('tilt_x', 0.)  # Tilt angle along x (arc seconds)
    tilt_y = PASSVALUE.get('tilt_y', 0.)  # Tilt angle along y (arc seconds)
    noabs = PASSVALUE.get('noabs', False)  # Output complex amplitude?
    m1_hole_rad = PASSVALUE.get('m1_hole_rad', None)  # Inner hole diameter
    use_caching = PASSVALUE.get('use_caching',
                                False)  # Use cached files if available?
    get_wf = PASSVALUE.get('get_wf', False)  # Return wavefront
    """
    Prescription for a single quad lens system        
    """

    if 'phase_func' in PASSVALUE:
        print('DEPRECATED setting "phase_func": use "opd_func" instead')
        if 'opd_func' not in PASSVALUE:
            PASSVALUE['opd_func'] = PASSVALUE['phase_func']
    elif 'opd_func' not in PASSVALUE:
        print("no phase function")
    if 'phase_func_sec' in PASSVALUE:
        print(
            'DEPRECATED setting "phase_func_sec": use "opd_func_sec" instead')
        if 'opd_func_sec' not in PASSVALUE:
            PASSVALUE['opd_func_sec'] = PASSVALUE['phase_func_sec']

    # Define the wavefront
    wfo = proper.prop_begin(diam, wavelength, gridsize, beam_ratio)

    # Point off-axis
    prop_tilt(wfo, tilt_x, tilt_y)

    ###
    # Change to build ciruclar aperture??
    # Input aperture
    proper.prop_circular_aperture(wfo, diam / 2.)
    ###

    # Define entrance
    proper.prop_define_entrance(wfo)

    proper.prop_lens(wfo, m1_fl, "primary")

    if 'opd_func' in PASSVALUE:
        opd1_func = PASSVALUE['opd_func']

        def build_m1_opd():
            return gen_opdmap(opd1_func, proper.prop_get_gridsize(wfo),
                              proper.prop_get_sampling(wfo))

        wfo.wfarr *= build_phase_map(
            wfo,
            load_cacheable_grid(opd1_func.__name__, wfo, build_m1_opd,
                                use_caching))

    if get_wf:
        wf = proper.prop_get_wavefront(wfo)
        print('Got wavefront')

    if m1_hole_rad is not None:
        proper.prop_circular_obscuration(wfo, m1_hole_rad)

    #if get_wf:
    #   wf = proper.prop_get_wavefront(wfo)
    #  print('Got wavefront')

    # Focus
    proper.prop_propagate(wfo, m1_fl, "focus", TO_PLANE=True)

    # End
    (wfo, sampling) = proper.prop_end(wfo)
    if get_wf:
        return (wfo, wf, sampling)
    else:
        return (wfo, sampling)
示例#23
0
def telescope(
    wavelength,
    gridsize,
    PASSVALUE={
        'prefix': 'prova',
        'path': os.path.abspath(os.path.join(__file__, os.pardir)),
        'charge': 0,
        'CAL': 0,
        'diam': 37.,
        'spiders_width': 0.60,
        'spiders_angle': [0., 60., 120.],
        'beam_ratio': 0.25,
        'f_lens': 658.6,
        'npupil': 243,
        'r_obstr': 0.3,
        'pupil_file': 0,
        'phase_apodizer_file': 0,
        'amplitude_apodizer_file': 0,
        'TILT': [0., 0.],
        'LS': False,
        'RAVC': False,
        'LS_phase_apodizer_file': 0,
        'LS_amplitude_apodizer_file': 0,
        'LS_parameters': [0.0, 0.0, 0.0],
        'atm_screen': 0,
        'missing_segments_number': 0,
        'apodizer_misalignment': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
        'LS_misalignment': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
        'Island_Piston': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
        'NCPA': 0,
        'Debug_print': False,
        'Debug': False
    }):

    ## call all the vues passed via passvalue
    prefix = PASSVALUE['prefix']
    path = PASSVALUE['path']
    charge = PASSVALUE['charge']
    CAL = PASSVALUE['CAL']
    diam = PASSVALUE['diam']
    spiders_width = PASSVALUE['spiders_width']
    spiders_angle = PASSVALUE['spiders_angle']
    beam_ratio = PASSVALUE['beam_ratio']
    f_lens = PASSVALUE['f_lens']
    npupil = PASSVALUE['npupil']
    r_obstr = PASSVALUE['r_obstr']
    pupil_file = PASSVALUE['pupil_file']
    phase_apodizer_file = PASSVALUE['phase_apodizer_file']
    amplitude_apodizer_file = PASSVALUE['amplitude_apodizer_file']
    TILT = PASSVALUE['TILT']
    LS = PASSVALUE['LS']
    RAVC = PASSVALUE['RAVC']
    LS_phase_apodizer_file = PASSVALUE['LS_phase_apodizer_file']
    LS_amplitude_apodizer_file = PASSVALUE['LS_amplitude_apodizer_file']
    LS_parameters = PASSVALUE['LS_parameters']
    atm_screen = PASSVALUE['atm_screen']
    missing_segments_number = PASSVALUE['missing_segments_number']
    apodizer_misalignment = PASSVALUE['apodizer_misalignment']
    LS_misalignment = PASSVALUE['LS_misalignment']
    Island_Piston = PASSVALUE['Island_Piston']
    NCPA = PASSVALUE['NCPA']
    Debug_print = PASSVALUE['Debug_print']
    Debug = PASSVALUE['Debug']

    TILT = np.array(TILT)
    apodizer_misalignment = np.array(apodizer_misalignment)
    LS_misalignment = np.array(LS_misalignment)
    Island_Piston = np.array(Island_Piston)

    ## call the size of the grid
    n = int(gridsize)

    wfo = proper.prop_begin(diam, wavelength, gridsize,
                            beam_ratio)  # define the simualtion pupil
    lamda = proper.prop_get_wavelength(
        wfo)  #save the wavelength value [m] into lamda

    if (Debug_print == True):
        print("lambda: ", lamda)

    pupil(wfo, CAL, npupil, diam, r_obstr, spiders_width, spiders_angle,
          pupil_file, missing_segments_number, Debug, Debug_print)

    if (Debug == True):
        fits.writeto(
            path + prefix + '_pupil_pre_define.fits',
            proper.prop_get_amplitude(wfo)[int(n / 2) -
                                           int(npupil / 2 + 50):int(n / 2) +
                                           int(npupil / 2 + 50),
                                           int(n / 2) -
                                           int(npupil / 2 + 50):int(n / 2) +
                                           int(npupil / 2 + 50)],
            overwrite=True)

    proper.prop_define_entrance(wfo)  #define the entrance wavefront

    #wfo.wfarr *= 1./np.amax(wfo._wfarr) # max(amplitude)=1

    if (isinstance(atm_screen, (list, tuple, np.ndarray)) == True) and (
            atm_screen.ndim >= 2):  # when the atmosphere is present
        print('atmosphere')
        atmosphere(wfo, npupil, atm_screen, Debug_print, Debug)

    if (isinstance(NCPA, (list, tuple, np.ndarray))
            == True) and (NCPA.ndim >= 2):  # when the atmosphere is present
        NCPA_application(wfo, npupil, NCPA, path, Debug_print, Debug)

    if (RAVC
            == True) or (isinstance(phase_apodizer_file,
                                    (list, tuple, np.ndarray))
                         == True) or (isinstance(amplitude_apodizer_file,
                                                 (list, tuple, np.ndarray))
                                      == True):  # when tha apodizer is present
        apodization(wfo, r_obstr, npupil, RAVC, phase_apodizer_file,
                    amplitude_apodizer_file, apodizer_misalignment,
                    Debug_print, Debug)

    if (all(v == 0
            for v in Island_Piston) == False):  # when the piston is present
        island_effect_piston(wfo, npupil, Island_Piston, path, Debug_print,
                             Debug)

    if (TILT.any != 0.):  # when tip/tilt
        if (Debug_print == True):
            print("TILT: ", TILT)
            print("lamda: ", lamda)
        tiptilt = (np.multiply(
            TILT, lamda
        )) / 4  # translate the tip/tilt from lambda/D into RMS phase errors
        proper.prop_zernikes(wfo, [2, 3], tiptilt)  # 2-->xtilt, 3-->ytilt

    if (Debug == True):
        if CAL == 1:
            fits.writeto(path + prefix + '_pupil_amplitude_CAL1.fits',
                         proper.prop_get_amplitude(wfo)
                         [int(n / 2) - int(npupil / 2 + 50):int(n / 2) +
                          int(npupil / 2 + 50),
                          int(n / 2) - int(npupil / 2 + 50):int(n / 2) +
                          int(npupil / 2 + 50)],
                         overwrite=True)
            fits.writeto(
                path + prefix + '_pupil_phase_CAL1.fits',
                proper.prop_get_phase(wfo)[int(n / 2) -
                                           int(npupil / 2 + 50):int(n / 2) +
                                           int(npupil / 2 + 50),
                                           int(n / 2) -
                                           int(npupil / 2 + 50):int(n / 2) +
                                           int(npupil / 2 + 50)],
                overwrite=True)
        else:
            fits.writeto(
                path + prefix + '_pupil_amplitude_CAL0_RA' + str(int(RAVC)) +
                '_charge' + str(charge) + '_ATM' + str(
                    int(
                        isinstance(atm_screen, (list, tuple,
                                                np.ndarray)) == True)) +
                '.fits',
                proper.prop_get_amplitude(
                    wfo)[int(n / 2) - int(npupil / 2 + 50):int(n / 2) +
                         int(npupil / 2 + 50),
                         int(n / 2) - int(npupil / 2 + 50):int(n / 2) +
                         int(npupil / 2 + 50)],
                overwrite=True)
            fits.writeto(
                path + prefix + '_pupil_phase_CAL0_RA' + str(int(RAVC)) +
                '_charge' + str(charge) + '_ATM' + str(
                    int(
                        isinstance(atm_screen, (list, tuple,
                                                np.ndarray)) == True)) +
                '.fits',
                proper.prop_get_phase(wfo)[int(n / 2) -
                                           int(npupil / 2 + 50):int(n / 2) +
                                           int(npupil / 2 + 50),
                                           int(n / 2) -
                                           int(npupil / 2 + 50):int(n / 2) +
                                           int(npupil / 2 + 50)],
                overwrite=True)

    proper.prop_propagate(wfo, f_lens, 'inizio')  # propagate wavefront

    proper.prop_lens(wfo, f_lens,
                     'focusing lens vortex')  # propagate through a lens
    proper.prop_propagate(wfo, f_lens, 'VC')  # propagate wavefront

    vortex(wfo, CAL, charge, f_lens, path, Debug_print)

    if (Debug == True):
        if CAL == 1:
            fits.writeto(path + prefix + '_afterVortex_CAL1.fits',
                         proper.prop_get_amplitude(wfo)
                         [int(n / 2) - int(npupil / 2 + 50):int(n / 2) +
                          int(npupil / 2 + 50),
                          int(n / 2) - int(npupil / 2 + 50):int(n / 2) +
                          int(npupil / 2 + 50)],
                         overwrite=True)
            fits.writeto(
                path + prefix + '_afterVortex_CAL1_phase.fits',
                proper.prop_get_phase(wfo)[int(n / 2) -
                                           int(npupil / 2 + 50):int(n / 2) +
                                           int(npupil / 2 + 50),
                                           int(n / 2) -
                                           int(npupil / 2 + 50):int(n / 2) +
                                           int(npupil / 2 + 50)],
                overwrite=True)
        else:
            print(
                'ATM: ',
                str(
                    int(
                        isinstance(atm_screen, (list, tuple,
                                                np.ndarray)) == True)))
            if ((((int(
                    isinstance(atm_screen, (list, tuple,
                                            np.ndarray)) == True)))) == 1):
                print('atm_screen: ', atm_screen.shape)
                print(
                    'ATM: ',
                    int(
                        isinstance(atm_screen, (list, tuple,
                                                np.ndarray)) == True))
            fits.writeto(
                path + prefix + '_afterVortex_CAL0_RA' + str(int(RAVC)) +
                '_charge' + str(charge) + '_ATM' + str(
                    int(
                        isinstance(atm_screen, (list, tuple,
                                                np.ndarray)) == True)) +
                '.fits',
                proper.prop_get_amplitude(
                    wfo)[int(n / 2) - int(npupil / 2 + 50):int(n / 2) +
                         int(npupil / 2 + 50),
                         int(n / 2) - int(npupil / 2 + 50):int(n / 2) +
                         int(npupil / 2 + 50)],
                overwrite=True)
            fits.writeto(
                path + prefix + '_afterVortex_phase_CAL0_RA' + str(int(RAVC)) +
                '_charge' + str(charge) + '_ATM' + str(
                    int(
                        isinstance(atm_screen, (list, tuple,
                                                np.ndarray)) == True)) +
                '.fits',
                proper.prop_get_phase(wfo)[int(n / 2) -
                                           int(npupil / 2 + 50):int(n / 2) +
                                           int(npupil / 2 + 50),
                                           int(n / 2) -
                                           int(npupil / 2 + 50):int(n / 2) +
                                           int(npupil / 2 + 50)],
                overwrite=True)

    proper.prop_propagate(wfo, f_lens,
                          'Lyot Collimetor')  # propagate wavefront

    proper.prop_lens(wfo, f_lens,
                     'Lyot Collimetor')  # propagate wavefront through  a lens
    proper.prop_propagate(wfo, f_lens, 'Lyot Stop')  # propagate wavefront

    if (Debug == True):
        if CAL == 1:
            fits.writeto(path + prefix + '_beforeLS_CAL1.fits',
                         proper.prop_get_amplitude(wfo)
                         [int(n / 2) - int(npupil / 2 + 50):int(n / 2) +
                          int(npupil / 2 + 50),
                          int(n / 2) - int(npupil / 2 + 50):int(n / 2) +
                          int(npupil / 2 + 50)],
                         overwrite=True)
        else:
            fits.writeto(
                path + prefix + '_beforeLS_CAL0_charge' + str(charge) +
                '_ATM' + str(
                    int(
                        isinstance(atm_screen, (list, tuple,
                                                np.ndarray)) == True)) +
                '.fits',
                proper.prop_get_amplitude(
                    wfo)[int(n / 2) - int(npupil / 2 + 50):int(n / 2) +
                         int(npupil / 2 + 50),
                         int(n / 2) - int(npupil / 2 + 50):int(n / 2) +
                         int(npupil / 2 + 50)],
                overwrite=True)

    lyotstop(wfo, diam, r_obstr, npupil, RAVC, LS, LS_parameters,
             spiders_angle, LS_phase_apodizer_file, LS_amplitude_apodizer_file,
             LS_misalignment, path, Debug_print, Debug)

    if (Debug == True):
        if CAL == 1:
            fits.writeto(path + prefix + '_afterLS_CAL1.fits',
                         proper.prop_get_amplitude(wfo)
                         [int(n / 2) - int(npupil / 2 + 50):int(n / 2) +
                          int(npupil / 2 + 50),
                          int(n / 2) - int(npupil / 2 + 50):int(n / 2) +
                          int(npupil / 2 + 50)],
                         overwrite=True)
        else:
            fits.writeto(
                path + prefix + '_afterLS_CAL0_charge' + str(charge) + '_LS' +
                str(int(LS)) + '_RA' + str(int(RAVC)) + '_ATM' + str(
                    int(
                        isinstance(atm_screen, (list, tuple,
                                                np.ndarray)) == True)) +
                '.fits',
                proper.prop_get_amplitude(
                    wfo)[int(n / 2) - int(npupil / 2 + 50):int(n / 2) +
                         int(npupil / 2 + 50),
                         int(n / 2) - int(npupil / 2 + 50):int(n / 2) +
                         int(npupil / 2 + 50)],
                overwrite=True)

    proper.prop_propagate(wfo, f_lens)  # propagate wavefront

    proper.prop_lens(wfo, f_lens)  # propagate wavefront through a lens
    proper.prop_propagate(wfo, f_lens)  # propagate wavefront

    (wfo, sampling) = proper.prop_end(
        wfo, NOABS=True
    )  # conclude the simulation --> noabs= the wavefront array will be complex

    return (wfo, sampling)  # return the wavefront
示例#24
0
def toliman_prescription_simple(wavelength, gridsize):
    # Values from Eduardo's RC Toliman system
    diam = 0.3  # telescope diameter in meters
    fl_pri = 0.5 * 1.143451  # primary focal length (m)
    # BN 20180208
    d_pri_sec = 0.549337630333726  # primary to secondary separation (m)
    #    d_pri_sec = 0.559337630333726            # primary to secondary separation (m)
    fl_sec = -0.5 * 0.0467579189727913  # secondary focal length (m)
    d_sec_to_focus = 0.528110658881  # nominal distance from secondary to focus (from eqn)
    #    d_sec_to_focus = 0.589999999989853       # nominal distance from secondary to focus
    beam_ratio = 0.2  # initial beam width/grid width

    m2_rad = 0.059  # Secondary half-diameter (m)
    m2_strut_width = 0.01  # Width of struts supporting M2 (m)
    m2_supports = 5

    # Define the wavefront
    wfo = proper.prop_begin(diam, wavelength, gridsize, beam_ratio)

    # Input aperture
    proper.prop_circular_aperture(wfo, diam / 2)
    # NOTE: could prop_propagate() here if some baffling included
    # Secondary and structs obscuration
    proper.prop_circular_obscuration(wfo,
                                     m2_rad)  # secondary mirror obscuration
    # Spider struts/vanes, arranged evenly radiating out from secondary
    strut_length = diam / 2 - m2_rad
    strut_step = 360 / m2_supports
    strut_centre = m2_rad + strut_length / 2
    for i in range(0, m2_supports):
        angle = i * strut_step
        radians = math.radians(angle)
        xoff = math.cos(radians) * strut_centre
        yoff = math.sin(radians) * strut_centre
        proper.prop_rectangular_obscuration(wfo,
                                            m2_strut_width,
                                            strut_length,
                                            xoff,
                                            yoff,
                                            ROTATION=angle + 90)

    # Define entrance
    proper.prop_define_entrance(wfo)

    # Primary mirror (treat as quadratic lens)
    proper.prop_lens(wfo, fl_pri, "primary")

    # Propagate the wavefront
    proper.prop_propagate(wfo, d_pri_sec, "secondary")

    # Secondary mirror (another quadratic lens)
    proper.prop_lens(wfo, fl_sec, "secondary")

    # NOTE: hole through primary?

    # Focus
    # BN 20180208 - Need TO_PLANE=True if you want an intermediate plane
    proper.prop_propagate(wfo, d_sec_to_focus, "focus", TO_PLANE=True)
    #    proper.prop_propagate(wfo, d_sec_to_focus, "focus", TO_PLANE = False)

    # End
    (wfo, sampling) = proper.prop_end(wfo)

    return (wfo, sampling)
示例#25
0
def lens(wfo, f_lens):
    proper.prop_propagate(wfo, f_lens)
    proper.prop_lens(wfo, f_lens)
    proper.prop_propagate(wfo, f_lens)
示例#26
0
def simple_telescope(wavelength, gridsize):

    # Define entrance aperture diameter and other quantities
    d_objective = 5.0  # objective diameter in meters
    fl_objective = 20.0 * d_objective  # objective focal length in meters
    fl_eyepiece = 0.021  # eyepiece focal length
    fl_eye = 0.022  # human eye focal length
    beam_ratio = 0.3  # initial beam width/grid width

    # Define the wavefront
    wfo = proper.prop_begin(d_objective, wavelength, gridsize, beam_ratio)

    # print d_objective, wavelength, gridsize, beam_ratio
    # Define a circular aperture
    proper.prop_circular_aperture(wfo, d_objective / 2)

    # proper.prop_propagate(wfo, fl_objective)
    # proper.prop_propagate(wfo, fl_objective)
    # proper.prop_propagate(wfo, fl_objective)

    # plt.imshow(proper.prop_get_amplitude(wfo))
    # plt.show()

    # Define entrance
    proper.prop_define_entrance(wfo)
    # plt.imshow(proper.prop_get_amplitude(wfo))
    # plt.show()

    # proper.prop_propagate(wfo, fl_objective+fl_eyepiece, "eyepiece")
    # # plt.imshow(proper.prop_get_amplitude(wfo))
    # # plt.show()
    #
    # proper.prop_propagate(wfo, fl_objective+fl_eyepiece, "eyepiece")
    # plt.imshow(proper.prop_get_amplitude(wfo))
    # plt.show()
    #
    # proper.prop_propagate(wfo, fl_objective+fl_eyepiece, "eyepiece")
    # plt.imshow(proper.prop_get_amplitude(wfo))
    # plt.show()

    # Define a lens
    proper.prop_lens(wfo, fl_objective, "objective")
    # plt.imshow(proper.prop_get_amplitude(wfo))
    # plt.show()
    # Propagate the wavefront
    proper.prop_propagate(wfo, fl_objective + fl_eyepiece, "eyepiece")
    # plt.imshow(proper.prop_get_amplitude(wfo))
    # plt.show()
    # Define another lens
    proper.prop_lens(wfo, fl_eyepiece, "eyepiece")
    # plt.imshow(proper.prop_get_amplitude(wfo))
    # plt.show()
    exit_pupil_distance = fl_eyepiece / (1 - fl_eyepiece /
                                         (fl_objective + fl_eyepiece))
    proper.prop_propagate(wfo, exit_pupil_distance, "exit pupil at eye lens")
    # quicklook_wf(wfo)
    # plt.imshow(proper.prop_get_amplitude(wfo))
    # plt.show()
    proper.prop_lens(wfo, fl_eye, "eye")
    proper.prop_propagate(wfo, fl_eye, "retina")
    # plt.imshow(proper.prop_get_amplitude(wfo))
    # plt.show()
    quicklook_wf(wfo)
    phase_map = proper.prop_get_phase(wfo)
    amp_map = proper.prop_get_amplitude(wfo)
    # quicklook_im(phase_map)

    amp_map[80:100, 80:100] = 0
    quicklook_im(amp_map, logAmp=True)

    import numpy as np
    wfo.wfarr = proper.prop_shift_center(amp_map * np.cos(phase_map) +
                                         1j * amp_map * np.sin(phase_map))
    # quicklook_wf(wf_array[iw,0])
    proper.prop_propagate(wfo, fl_eye, "retina")
    proper.prop_lens(wfo, fl_eye, "eye")
    quicklook_wf(wfo)

    # End
    (wfo, sampling) = proper.prop_end(wfo)

    return (wfo, sampling)
示例#27
0
文件: vortex.py 项目: lbusoni/MEDIS
                                 calib)  # read the perfect-result vortex field
            perf_num = perf_num / psf0 * scale_psf
            wfo._wfarr = (
                wfo._wfarr - psf_num
            ) * vvc + perf_num  # the wavefront takes into account the real pupil with the perfect-result vortex field
        quicklook_wf(wfo)
        proper.prop_propagate(wfo, f_lens, "propagate to pupil reimaging lens")
        proper.prop_lens(wfo, f_lens, "apply pupil reimaging lens")
        proper.prop_propagate(wfo, f_lens, "lyot stop")
        quicklook_wf(wfo)
    return wfo


wfo = proper.prop_begin(tp.diam, tp.band[0], tp.grid_size, tp.beam_ratio)
proper.prop_circular_aperture(wfo, tp.diam / 2)
proper.prop_define_entrance(wfo)
# proper.prop_zernikes(wfo, [2, 3], np.array([3,3])*1e-6)

vortex(wfo)
# quicklook_wf(wfo)
proper.prop_circular_aperture(wfo, 0.75, NORM=True)
quicklook_wf(wfo)

proper.prop_propagate(wfo, tp.f_lens)
proper.prop_lens(wfo, tp.f_lens)

# quicklook_wf(wfo)
(wframe, sampling) = proper.prop_end(wfo)
print np.sum(phot.aper_phot(wframe, 0, 5, plot=True))
quicklook_im(wframe, logAmp=True)
quicklook_im(phot.aper_phot(wframe, 0, 5))
示例#28
0
def coronagraph(wfo, f_lens, occulter_type, occult_loc, diam):
    # proper.prop_lens(wfo, f_lens, "coronagraph imaging lens")
    # proper.prop_propagate(wfo, f_lens, "occulter")
    # quicklook_wf(wfo)
    # occulter sizes are specified here in units of lambda/diameter;
    # convert lambda/diam to radians then to meters

    lamda = proper.prop_get_wavelength(wfo)
    # print lamda
    occrad = 3  # occulter radius in lam/D
    occrad_rad = occrad * lamda / diam  # occulter radius in radians
    dx_m = proper.prop_get_sampling(wfo)
    dx_rad = proper.prop_get_sampling_radians(wfo)
    occrad_m = occrad_rad * dx_m / dx_rad  # occulter radius in meters
    # print occrad_m, occulter_type
    # print 'line 22.', occulter_type
    #plt.figure(figsize=(12,8))
    # quicklook_wf(wfo)
    if occulter_type == "Gaussian":
        r = proper.prop_radius(wfo)
        h = np.sqrt(-0.5 * occrad_m**2 / np.log(1 - np.sqrt(0.5)))  #*0.8
        gauss_spot = 1 - np.exp(-0.5 * (r / h)**2)
        # print occult_loc
        # gauss_spot = np.roll(gauss_spot,occult_loc,(0,1))
        gauss_spot = shift(gauss_spot, shift=occult_loc, mode='wrap')
        proper.prop_multiply(wfo, gauss_spot)
        # quicklook_wf(wfo)
        #plt.suptitle("Gaussian spot", fontsize = 18)
    elif occulter_type == "Solid":
        proper.prop_circular_obscuration(wfo, occrad_m * 4. / 3)
        #plt.suptitle("Solid spot", fontsize = 18)
        # quicklook_wf(wfo)
    elif occulter_type == "8th_Order":
        proper.prop_8th_order_mask(wfo, occrad * 3. / 4., CIRCULAR=True)
        # quicklook_wf(wfo)
    elif occulter_type == 'Vortex':
        # print('lol')
        # apodization(wfo, True)
        vortex(wfo)
        # lyotstop(wfo, True)

        #plt.suptitle("8th order band limited spot", fontsize = 18)
    # quicklook_wf(wfo, logAmp=False, show=True)
    # After occulter
    # plt.subplot(1,2,1)
    # plt.imshow(np.sqrt(proper.prop_get_amplitude(wfo)), origin = "lower", cmap = plt.cm.gray)
    # plt.text(200, 10, "After Occulter", color = "w")
    # plt.show()
    # quicklook_wf(wfo)

    proper.prop_propagate(wfo, f_lens, "pupil reimaging lens")
    # quicklook_wf(wfo)
    proper.prop_lens(wfo, f_lens, "pupil reimaging lens")
    # quicklook_wf(wfo)
    proper.prop_propagate(wfo, 2 * f_lens, "lyot stop")
    # quicklook_wf(wfo)

    # from numpy.fft import fft2, ifft2
    # wfo.wfarr = fft2(wfo.wfarr) #/ np.size(wfo.wfarr)
    # quicklook_wf(wfo)

    # plt.subplot(1,2,2)
    # plt.imshow(proper.prop_get_amplitude(wfo)**0.2, origin = "lower", cmap = plt.cm.gray)
    # plt.text(200, 10, "Before Lyot Stop", color = "w")
    # plt.show()
    # quicklook_wf(wfo,logAmp=False, show=True)

    if occulter_type == "Gaussian":
        # quicklook_wf(wfo)
        proper.prop_circular_aperture(wfo, 0.75, NORM=True)
    elif occulter_type == "Solid":
        # quicklook_wf(wfo)
        proper.prop_circular_aperture(wfo, 0.84, NORM=True)
    elif occulter_type == "8th_Order":
        # quicklook_wf(wfo)
        proper.prop_circular_aperture(wfo, 0.75, NORM=True)  #0.5
    elif occulter_type == "Vortex":
        # proper.prop_circular_aperture(wfo, 0.98, NORM = True) #0.5
        lyotstop(wfo, True)
        # quicklook_wf(wfo)
    elif occulter_type == "None (Lyot Stop)":
        proper.prop_circular_aperture(wfo, 0.8, NORM=True)

    proper.prop_propagate(wfo, f_lens, "reimaging lens")
    # errs = np.sqrt(proper.prop_get_amplitude(wfo))
    # # plt.figure()
    # # plt.imshow(errs)
    # # plt.show()
    # quicklook_wf(wfo)
    proper.prop_lens(wfo, f_lens, "reimaging lens")
    # quicklook_wf(wfo)
    proper.prop_propagate(wfo, f_lens, "final focus")
    # from numpy.fft import fft2, ifft2
    # wfo.wfarr = fft2(wfo.wfarr) / np.size(wfo.wfarr)
    # quicklook_wf(wfo)
    return
示例#29
0
def vortex(wfo, CAL, charge, f_lens, path, Debug_print):

    n = int(proper.prop_get_gridsize(wfo))
    ofst = 0  # no offset
    ramp_sign = 1  #sign of charge is positive
    #sampling = n
    ramp_oversamp = 11.  # vortex is oversampled for a better discretization

    if charge != 0:
        if CAL == 1:  # create the vortex for a perfectly circular pupil
            if (Debug_print == True):
                print("CAL:1, charge ", charge)
            writefield(path, 'zz_psf', wfo.wfarr)  # write the pre-vortex field
            nramp = int(n * ramp_oversamp)  #oversamp
            # create the vortex by creating a matrix (theta) representing the ramp (created by atan 2 gradually varying matrix, x and y)
            y1 = np.ones((nramp, ), dtype=np.int)
            y2 = np.arange(0, nramp, 1.) - (nramp / 2) - int(ramp_oversamp) / 2
            y = np.outer(y2, y1)
            x = np.transpose(y)
            theta = np.arctan2(y, x)
            x = 0
            y = 0
            #vvc_tmp_complex = np.array(np.zeros((nramp,nramp)), dtype=complex)
            #vvc_tmp_complex.imag = ofst + ramp_sign*charge*theta
            #vvc_tmp = np.exp(vvc_tmp_complex)
            vvc_tmp = np.exp(1j * (ofst + ramp_sign * charge * theta))
            theta = 0
            vvc_real_resampled = cv2.resize(
                vvc_tmp.real, (0, 0),
                fx=1 / ramp_oversamp,
                fy=1 / ramp_oversamp,
                interpolation=cv2.INTER_LINEAR
            )  # scale the pupil to the pupil size of the simualtions
            vvc_imag_resampled = cv2.resize(
                vvc_tmp.imag, (0, 0),
                fx=1 / ramp_oversamp,
                fy=1 / ramp_oversamp,
                interpolation=cv2.INTER_LINEAR
            )  # scale the pupil to the pupil size of the simualtions
            vvc = np.array(vvc_real_resampled, dtype=complex)
            vvc.imag = vvc_imag_resampled
            vvcphase = np.arctan2(vvc.imag,
                                  vvc.real)  # create the vortex phase
            vvc_complex = np.array(np.zeros((n, n)), dtype=complex)
            vvc_complex.imag = vvcphase
            vvc = np.exp(vvc_complex)
            vvc_tmp = 0.
            writefield(path, 'zz_vvc',
                       vvc)  # write the theoretical vortex field
            wfo0 = wfo
            proper.prop_multiply(wfo, vvc)
            proper.prop_propagate(wfo, f_lens, 'OAP2')
            proper.prop_lens(wfo, f_lens)
            proper.prop_propagate(wfo, f_lens, 'forward to Lyot Stop')
            proper.prop_circular_obscuration(
                wfo, 1., NORM=True)  # null the amplitude iside the Lyot Stop
            proper.prop_propagate(wfo, -f_lens)  # back-propagation
            proper.prop_lens(wfo, -f_lens)
            proper.prop_propagate(wfo, -f_lens)
            writefield(path, 'zz_perf',
                       wfo.wfarr)  # write the perfect-result vortex field
            wfo = wfo0
        else:
            if (Debug_print == True):
                print("CAL:0, charge ", charge)
            vvc = readfield(path,
                            'zz_vvc')  # read the theoretical vortex field
            vvc = proper.prop_shift_center(vvc)
            scale_psf = wfo._wfarr[0, 0]
            psf_num = readfield(path, 'zz_psf')  # read the pre-vortex field
            psf0 = psf_num[0, 0]
            psf_num = psf_num / psf0 * scale_psf
            perf_num = readfield(
                path, 'zz_perf')  # read the perfect-result vortex field
            perf_num = perf_num / psf0 * scale_psf
            wfo._wfarr = (
                wfo._wfarr - psf_num
            ) * vvc + perf_num  # the wavefront takes into account the real pupil with the perfect-result vortex field

    return