示例#1
0
def test_transmittance_prospect5(datadir):
    # runs prospect and compares to online prospect run
    fname = datadir("prospect5_spectrum.txt")
    w, true_refl, true_trans = np.loadtxt(fname,
            unpack=True)

    w, refl, trans = prosail.run_prospect(2.1, 40, 10., 0.1, 
                0.015, 0.009, prospect_version="5")
    assert np.allclose( true_trans, trans, atol=1e-4)
示例#2
0
def call_prospect_5(n, cab, car, cbrown, cw, cm):
    """A wrapper for PROSPECT that does away with some numerical 
    instabilities by interpolating over spectrally."""
    x, r, t = prosail.run_prospect(n,
                                   cab,
                                   car,
                                   cbrown,
                                   cw,
                                   cm,
                                   prospect_version="5")
    rpass = np.isfinite(r)
    tpass = np.isfinite(t)
    ri = np.interp(x, x[rpass], r[rpass])
    ti = np.interp(x, x[tpass], t[tpass])
    return np.c_[ri, ti]
示例#3
0
def test_reflectance_prospectpro(datadir):
    fname = datadir("prospect_pro_test.txt")
    w, refl_mtlab, trans_mtlab = np.loadtxt(fname, unpack=True)
    w, refl, trans = prosail.run_prospect(
        n=1.2,
        cab=30,
        car=10.0,
        cbrown=0.0,
        cw=0.015,
        cm=0.009,
        ant=1.0,
        prot=0.001,
        cbc=0.009,
        prospect_version="PRO",
    )
    assert np.allclose(refl_mtlab, refl, atol=1.0e-4)
示例#4
0
def test_transmittance_prospectpro(datadir):
    fname = datadir("prospect_pro_test.txt")
    w, refl_mtlab, trans_mtlab = np.loadtxt(fname, unpack=True)
    w, refl, trans = prosail.run_prospect(
        1.2,
        30,
        10.0,
        0.0,
        0.015,
        0.009,
        ant=1.0,
        prot=0.001,
        cbc=0.009,
        prospect_version="PRO",
    )
    assert np.allclose(trans_mtlab, trans, atol=1.0e-4)
示例#5
0
def fwd_model(x, rho_std, leaf, do_plot=True):
    wv, rho_pred, _ = prosail.run_prospect(x[0],
                                           x[1],
                                           x[2],
                                           x[3],
                                           x[4],
                                           x[5],
                                           ant=x[6])

    rho_noise = np.random.randn(len(wv)) * rho_std
    rho_meas = rho_pred + rho_noise
    rho_std *= np.ones(2101)

    if do_plot:
        plot_spectra(rho_pred, rho_std, leaf)

    return rho_pred
示例#6
0
def prospect_lklhood(x, wl, rho, rho_unc):
    """Calculates the log-likelihood of leaf reflectance measurements
    assuming Gaussian additive noise. Can either use reflectance or
    transmittance or both."""
    wv, rho_pred, _ = prosail.run_prospect(x[0],
                                           x[1],
                                           x[2],
                                           x[3],
                                           x[4],
                                           x[5],
                                           ant=x[6])
    rho_unc_ndim = rho_unc.ndim

    if rho_unc_ndim == 1:
        cov_obs_rho_inv = 1.0 / (rho_unc * rho_unc)
    elif rho_unc_ndim == 2:
        cov_obs_rho_inv = 1. / rho_unc.diagonal()
    refl_lklhood = np.sum(0.5 * cov_obs_rho_inv *
                          (rho_pred[([150, 260, 335, 390])] - rho)**2)

    return refl_lklhood
示例#7
0
文件: _external.py 项目: zmoon/crt1d
def leaf_ps5(n=1.2, cab=30.0, car=10.0, cbr=1.0, ewt=0.015, lma=0.009):
    """Run PROSPECT-5 from Python package ``prosail``
    (source `on GitHub <https://github.com/jgomezdans/prosail>`_)
    to generate leaf spectra.

    Default values are the same as those on the
    `online PROSPECT page <http://opticleaf.ipgp.fr/index.php?page=prospect>`_.

    Parameters
    ----------
    n : float
        Leaf structure parameter (number of effective layers of leaf?; dimensionless).
        Typical range: [0.8, 3.0].
    cab : float
        Chlorophyll a+b concentration (μg cm-2).
        Typical range: [0, 100].
    car : float
        Carotenoid concentration (μg cm-2).
        Typical range: [0, 25].
    cbr : float
        Brown pigment fraction/factor in [0, 1].
    ewt : float
        Equivalent leaf water thickness (cm).
        Typical range: [0, 0.05].
    lma : float
        Leaf dry mass per unit area (g cm-2).
        Typical range: [0, 0.02].

    Returns
    -------
    xr.Dataset
        Dataset of the leaf reflectance and transmittance spectra,
        and PROSPECT input parameters as dimensionless variables.

    Notes
    -----
    Quoted typical ranges are based on the PROSPECT page and Python PROSAIL readme linked above.
    """
    import prosail

    wl_nm, r, t = prosail.run_prospect(n,
                                       cab,
                                       car,
                                       cbr,
                                       ewt,
                                       lma,
                                       prospect_version="5")

    wl = wl_nm / 1000  # nm -> um

    attrs = {}
    ds = xr.Dataset(
        coords=_wl_coord_dict(wl),
        data_vars={
            "rl":
            _tup("leaf_r", r),
            "tl":
            _tup("leaf_t", t),
            "n": ((), n, {
                "long_name": "Leaf structure parameter",
                "units": ""
            }),
            "cab": ((), cab, {
                "long_name": "Chlorophyll a+b",
                "units": "μg cm-2"
            }),
            "car": ((), car, {
                "long_name": "Carotenoid",
                "units": "μg cm-2"
            }),
            "cbr": ((), cbr, {
                "long_name": "Brown pigment",
                "units": ""
            }),
            "ewt": ((), ewt, {
                "long_name": "Equivalent leaf water thickness",
                "units": "cm"
            }),
            "lma": ((), lma, {
                "long_name": "Leaf dry mass density",
                "units": "g cm-2"
            }),
        },
        attrs=attrs,
    )
    return ds
示例#8
0
def test_transmittance_prospectd(datadir):
    fname = datadir("prospect_d_test.mat")
    trans_mtlab = loadmat(fname)['LRT'][:,2]
    w, refl, trans = prosail.run_prospect(1.2, 30, 10., 0.0, 
                0.015, 0.009, ant=1., prospect_version="D")
    assert np.allclose(trans_mtlab, trans, atol=1.e-4)
示例#9
0
def run_prosail(n,
                cab,
                car,
                cbrown,
                cw,
                cm,
                lai,
                lidfa,
                hspot,
                tts,
                tto,
                psi,
                ant=0.0,
                alpha=40.,
                prospect_version="5",
                typelidf=2,
                lidfb=0.,
                factor="SDR",
                rsoil0=None,
                rsoil=None,
                psoil=None,
                soil_spectrum1=None,
                soil_spectrum2=None):
    """Run the PROSPECT_5B and SAILh radiative transfer models. The soil
    model is a linear mixture model, where two spectra are combined together as

         rho_soil = rsoil*(psoil*soil_spectrum1+(1-psoil)*soil_spectrum2)
    By default, ``soil_spectrum1`` is a dry soil, and ``soil_spectrum2`` is a
    wet soil, so in that case, ``psoil`` is a surface soil moisture parameter.
    ``rsoil`` is a  soil brightness term. You can provide one or the two
    soil spectra if you want.  The soil spectra must be defined
    between 400 and 2500 nm with 1nm spacing.

    Parameters
    ----------
    n: float
        Leaf layers
    cab: float
        leaf chlorophyll concentration
    car: float
        leaf carotenoid concentration
    cbrown: float
        senescent pigment
    cw: float
        equivalent leaf water
    cm: float
        leaf dry matter
    lai: float
        leaf area index
    lidfa: float
        a parameter for leaf angle distribution. If ``typliedf``=2, average
        leaf inclination angle.
    tts: float
        Solar zenith angle
    tto: float
        Sensor zenith angle
    psi: float
        Relative sensor-solar azimuth angle ( saa - vaa )
    ant: float
        leaf anthocyanin concentration (default set to 0)
    alpha: float
        The alpha angle (in degrees) used in the surface scattering
        calculations. By default it's set to 40 degrees.
    prospect_version: str
        Which PROSPECT version to use. We have "5" and "D"
    typelidf: int, optional
        The type of leaf angle distribution function to use. By default, is set
        to 2.
    lidfb: float, optional
        b parameter for leaf angle distribution. If ``typelidf``=2, ignored
    factor: str, optional
        What reflectance factor to return:
        * "SDR": directional reflectance factor (default)
        * "BHR": bi-hemispherical r. f.
        * "DHR": Directional-Hemispherical r. f. (directional illumination)
        * "HDR": Hemispherical-Directional r. f. (directional view)
        * "ALL": All of them
    rsoil0: float, optional
        The soil reflectance spectrum
    rsoil: float, optional
        Soil scalar 1 (brightness)
    psoil: float, optional
        Soil scalar 2 (moisture)
    soil_spectrum1: 2101-element array
        First component of the soil spectrum
    soil_spectrum2: 2101-element array
        Second component of the soil spectrum
    Returns
    --------
    A reflectance factor between 400 and 2500 nm


    """

    factor = factor.upper()
    if factor not in ["SDR", "BHR", "DHR", "HDR", "ALL"]:
        raise ValueError("'factor' must be one of SDR, BHR, DHR, HDR or ALL")

    if soil_spectrum1 is not None:
        assert (len(soil_spectrum1) == 2101)
    else:
        soil_spectrum1 = prosail.spectral_lib.soil.rsoil1

    if soil_spectrum2 is not None:
        assert (len(soil_spectrum1) == 2101)
    else:
        soil_spectrum2 = prosail.spectral_lib.soil.rsoil2

    if rsoil0 is None:
        if (rsoil is None) or (psoil is None):
            raise ValueError("If rsoil0 isn't define, then rsoil and psoil" + \
                             " need to be defined!")
        rsoil0 = rsoil * (psoil * soil_spectrum1 +
                          (1. - psoil) * soil_spectrum2)

    wv, refl, trans = run_prospect(n,
                                   cab,
                                   car,
                                   cbrown,
                                   cw,
                                   cm,
                                   ant=ant,
                                   prospect_version=prospect_version,
                                   alpha=alpha)

    [
        tss, too, tsstoo, rdd, tdd, rsd, tsd, rdo, tdo, rso, rsos, rsod, rddt,
        rsdt, rdot, rsodt, rsost, rsot, gammasdf, gammasdb, gammaso
    ] = foursail(refl, trans, lidfa, lidfb, typelidf, lai, hspot, tts, tto,
                 psi, rsoil0)

    if factor == "SDR":
        return rsot
    elif factor == "BHR":
        return rddt
    elif factor == "DHR":
        return rsdt
    elif factor == "HDR":
        return rdot
    elif factor == "ALL":
        return [rsot, rddt, rsdt, rdot]