def grpc_request_api_gateway(oauth_key, oauth_secret, namespace, rest_endpoint="localhost:8002", grpc_endpoint="localhost:8003", data_size=5, rows=1, data=None): token = get_token(oauth_key, oauth_secret, namespace, rest_endpoint) if data is None: shape, arr = create_random_data(data_size, rows) else: shape = data.shape arr = data.flatten() datadef = prediction_pb2.DefaultData( tensor=prediction_pb2.Tensor(shape=shape, values=arr)) request = prediction_pb2.SeldonMessage(data=datadef) channel = grpc.insecure_channel(grpc_endpoint) stub = prediction_pb2_grpc.SeldonStub(channel) metadata = [('oauth_token', token)] response = stub.Predict(request=request, metadata=metadata) return response
def grpc_request_ambassador(deploymentName, namespace, endpoint="localhost:8004", data_size=5, rows=1, data=None): if data is None: shape, arr = create_random_data(data_size, rows) else: shape = data.shape arr = data.flatten() datadef = prediction_pb2.DefaultData( tensor=prediction_pb2.Tensor(shape=shape, values=arr)) request = prediction_pb2.SeldonMessage(data=datadef) channel = grpc.insecure_channel(endpoint) stub = prediction_pb2_grpc.SeldonStub(channel) if namespace is None: metadata = [('seldon', deploymentName)] else: metadata = [('seldon', deploymentName), ('namespace', namespace)] response = stub.Predict(request=request, metadata=metadata) return response
def on_start(self): """ get token :return: """ print "on start" self.oauth_enabled = getEnviron('OAUTH_ENABLED', "false") self.oauth_key = getEnviron('OAUTH_KEY', "key") self.oauth_secret = getEnviron('OAUTH_SECRET', "secret") self.data_size = int(getEnviron('DATA_SIZE', "1")) self.send_feedback = int(getEnviron('SEND_FEEDBACK', "1")) self.oauth_endpoint = getEnviron('OAUTH_ENDPOINT', "http://127.0.0.1:30015") #self.grpc_endpoint = getEnviron('GRPC_ENDPOINT',"127.0.0.1:30017") if self.oauth_enabled == "true": self.get_token() else: self.access_token = "NONE" channel = grpc.insecure_channel(HOST) self.stub = prediction_pb2_grpc.SeldonStub(channel) self.rewardProbas = [0.5, 0.2, 0.9, 0.3, 0.7] self.routeRewards = {} self.routesSeen = []
def get_prediction(image, server_host='127.0.0.1', server_port=8080, deployment_name="server", timeout=10.0): """ Retrieve a prediction from a TensorFlow model server :param image: a MNIST image represented as a 1x784 array :param server_host: the address of the Seldon server :param server_port: the port used by the server :param deployment_name: the name of the deployment :param timeout: the amount of time to wait for a prediction to complete :return 0: the integer predicted in the MNIST image :return 1: the confidence scores for all classes :return 2: the version number of the model handling the request """ try: # build request chosen = 0 data = image[chosen].reshape(784) datadef = prediction_pb2.DefaultData( tensor=prediction_pb2.Tensor(shape=data.shape, values=data)) # retrieve results request = prediction_pb2.SeldonMessage(data=datadef) print("connecting to:%s:%i" % (server_host, server_port)) channel = grpc.insecure_channel(server_host + ":" + str(server_port)) stub = prediction_pb2_grpc.SeldonStub(channel) metadata = [('seldon', deployment_name)] response = stub.Predict(request=request, metadata=metadata) except Exception as e: # server connection failed print("Could Not Connect to Server: " + str(e)) return response.data.tensor.values
def run_predict(args): contract = json.load(open(args.contract, 'r')) contract = unfold_contract(contract) feature_names = [feature["name"] for feature in contract["features"]] REST_url = "http://" + args.host + ":" + str(args.port) + "/predict" for i in range(args.n_requests): batch = generate_batch(contract, args.batch_size, 'features') if args.prnt: print('-' * 40) print("SENDING NEW REQUEST:") if not args.grpc: headers = {} REST_request = gen_REST_request(batch, features=feature_names, tensor=args.tensor) if args.prnt: print(REST_request) if args.oauth_key: token = get_token(args) headers = {'Authorization': 'Bearer ' + token} response = requests.post("http://" + args.host + ":" + str(args.port) + "/api/v0.1/predictions", json=REST_request, headers=headers) else: response = requests.post( "http://" + args.host + ":" + str(args.port) + args.ambassador_path + "/api/v0.1/predictions", json=REST_request, headers=headers) jresp = response.json() if args.prnt: print("RECEIVED RESPONSE:") print(jresp) print() else: GRPC_request = gen_GRPC_request(batch, features=feature_names, tensor=args.tensor) if args.prnt: print(GRPC_request) channel = grpc.insecure_channel('{}:{}'.format( args.host, args.port)) stub = prediction_pb2_grpc.SeldonStub(channel) if args.oauth_key: token = get_token(args) metadata = [('oauth_token', token)] response = stub.Predict(request=GRPC_request, metadata=metadata) else: response = stub.Predict(request=GRPC_request) if args.prnt: print("RECEIVED RESPONSE:") print(response) print()
def run_send_feedback(args): contract = json.load(open(args.contract, 'r')) contract = unfold_contract(contract) feature_names = [feature["name"] for feature in contract["features"]] response_names = [feature["name"] for feature in contract["targets"]] REST_url = "http://" + args.host + ":" + str(args.port) + "/send-feedback" for i in range(args.n_requests): batch = generate_batch(contract, args.batch_size, 'features') response = generate_batch(contract, args.batch_size, 'targets') if args.prnt: print('-' * 40) print("SENDING NEW REQUEST:") if not args.grpc: REST_request = gen_REST_request(batch, features=feature_names, tensor=args.tensor) REST_response = gen_REST_request(response, features=response_names, tensor=args.tensor) reward = 1.0 REST_feedback = { "request": REST_request, "response": REST_response, "reward": reward } if args.prnt: print(REST_feedback) if args.oauth_key: token = get_token(args) headers = {'Authorization': 'Bearer ' + token} response = requests.post("http://" + args.host + ":" + str(args.port) + "/api/v0.1/feedback", json=REST_feedback, headers=headers) else: response = requests.post( "http://" + args.host + ":" + str(args.port) + args.ambassador_path + "/api/v0.1/feedback", json=REST_feedback, headers=headers) if args.prnt: print(response) elif args.grpc: GRPC_request = gen_GRPC_request(batch, features=feature_names, tensor=args.tensor) GRPC_response = gen_GRPC_request(response, features=response_names, tensor=args.tensor) reward = 1.0 GRPC_feedback = prediction_pb2.Feedback(request=GRPC_request, response=GRPC_response, reward=reward) if args.prnt: print(GRPC_feedback) channel = grpc.insecure_channel('{}:{}'.format( args.host, args.port)) stub = prediction_pb2_grpc.SeldonStub(channel) if args.oauth_key: token = get_token(args) metadata = [('oauth_token', token)] response = stub.SendFeedback(request=GRPC_feedback, metadata=metadata) else: response = stub.SendFeedback(request=GRPC_feedback) if args.prnt: print("RECEIVED RESPONSE:") print()