def find_normalization_params(pat_adc, pat_gt, label, pat_model): # Create the normalization object and load the model adc_norm = PiecewiseLinearNormalization(ADCModality()) adc_norm.load_model(pat_model) # Read the ADC adc_mod = ADCModality() adc_mod.read_data_from_path(pat_adc) # Read the GT gt_mod = GTModality() gt_mod.read_data_from_path(label, pat_gt) # Find the normalization parameters adc_norm.fit(adc_mod, ground_truth=gt_mod, cat=label[0]) return adc_norm
# Remove a part of the string to have only the id nb_patient = id_patient_list[id_p].replace('Patient ', '') # Read the image data adc_mod = ADCModality() adc_mod.read_data_from_path(p_adc) # Read the GT gt_mod = GTModality() gt_mod.read_data_from_path(label_gt, p_gt) # Read the normalization information pat_chg = id_patient_list[id_p].lower().replace(' ', '_') + '_norm.p' filename = os.path.join(path_piecewise, pat_chg) adc_norm = PiecewiseLinearNormalization.load_from_pickles(filename) # Normalize the data adc_mod = adc_norm.normalize(adc_mod) # Create an object to extract the data in a matrix format using # the ground-truth ise = IntensitySignalExtraction(adc_mod) # Get the data print 'Extract the signal intensity for the ROI' data = ise.transform(adc_mod, ground_truth=gt_mod, cat=label_gt[0]) # Store the data print 'Store the matrix'
# Generate the different path to be later treated path_patients_list_adc = [] path_patients_list_gt = [] # Create the generator id_patient_list = (name for name in os.listdir(path_patients) if os.path.isdir(os.path.join(path_patients, name))) for id_patient in id_patient_list: # Append for the ADC data path_patients_list_adc.append( os.path.join(path_patients, id_patient, path_adc)) # Append for the GT data - Note that we need a list of gt path path_patients_list_gt.append( [os.path.join(path_patients, id_patient, path_gt)]) # Create the model iteratively adc_model = PiecewiseLinearNormalization(ADCModality()) for pat_adc, pat_gt in zip(path_patients_list_adc, path_patients_list_gt): # Read the ADC adc_mod = ADCModality() adc_mod.read_data_from_path(pat_adc) # Read the GT gt_mod = GTModality() gt_mod.read_data_from_path(label_gt, pat_gt) # Fit the model adc_model.partial_fit_model(adc_mod, ground_truth=gt_mod, cat=label_gt[0]) # Define the path where to store the model path_store_model = '/data/prostate/pre-processing/mp-mri-prostate/adc-model' filename_model = os.path.join(path_store_model, 'piecewise_model.npy')