def test_triangulate(self): # Camera states # -- Camera state 0 p_G_C0 = np.array([0.0, 0.0, 0.0]) rpy_C0G = np.array([deg2rad(0.0), deg2rad(0.0), deg2rad(0.0)]) q_C0G = euler2quat(rpy_C0G) C_C0G = C(q_C0G) # -- Camera state 1 p_G_C1 = np.array([1.0, 1.0, 0.0]) rpy_C1G = np.array([deg2rad(0.0), deg2rad(0.0), deg2rad(0.0)]) q_C1G = euler2quat(rpy_C1G) C_C1G = C(q_C1G) # Features landmark = np.array([0.0, 0.0, 10.0]) kp1 = self.cam_model.project(landmark, C_C0G, p_G_C0)[0:2] kp2 = self.cam_model.project(landmark, C_C1G, p_G_C1)[0:2] # Calculate rotation and translation of first and last camera states # -- Obtain rotation and translation from camera 0 to camera 1 C_C0C1 = dot(C_C0G, C_C1G.T) t_C0_C1C0 = dot(C_C0G, (p_G_C1 - p_G_C0)) # -- Convert from pixel coordinates to image coordinates pt1 = self.cam_model.pixel2image(kp1) pt2 = self.cam_model.pixel2image(kp2) # Triangulate p_C0_C1C0, r = self.estimator.triangulate(pt1, pt2, C_C0C1, t_C0_C1C0) # Assert self.assertTrue(np.allclose(p_C0_C1C0.ravel(), landmark))
def test_calculate_residuals(self): # Camera states # -- Camera state 0 p_G_C0 = np.array([0.0, 0.0, 0.0]) rpy_C0G = np.array([deg2rad(0.0), deg2rad(0.0), deg2rad(0.0)]) q_C0G = euler2quat(rpy_C0G) C_C0G = C(q_C0G) # -- Camera state 1 p_G_C1 = np.array([1.0, 1.0, 0.0]) rpy_C1G = np.array([deg2rad(0.0), deg2rad(0.0), deg2rad(0.0)]) q_C1G = euler2quat(rpy_C1G) C_C1G = C(q_C1G) # Features landmark = np.array([0.0, 0.0, 10.0]) kp1 = self.cam_model.project(landmark, C_C0G, p_G_C0)[0:2] kp2 = self.cam_model.project(landmark, C_C1G, p_G_C1)[0:2] # Setup feature track track_id = 0 frame_id = 1 data1 = KeyPoint(kp1, 21) data2 = KeyPoint(kp2, 21) track = FeatureTrack(track_id, frame_id, data1, data2) # Setup track cam states self.msckf.augment_state() self.msckf.min_track_length = 2 self.msckf.cam_states[0].p_G = p_G_C0.reshape((3, 1)) self.msckf.cam_states[0].q_CG = q_C0G.reshape((4, 1)) self.msckf.cam_states[1].p_G = p_G_C1.reshape((3, 1)) self.msckf.cam_states[1].q_CG = q_C1G.reshape((4, 1)) # Test self.msckf.calculate_residuals([track])
def test_prediction_update(self): # Setup data = RawSequence(RAW_DATASET, "2011_09_26", "0005") K = data.calib_cam2cam["K_00"].reshape((3, 3)) cam_model = PinholeCameraModel(1242, 375, K) # Initialize MSCKF msckf = MSCKF(n_g=1e-6 * np.ones(3), n_a=1e-6 * np.ones(3), n_wg=1e-6 * np.ones(3), n_wa=1e-6 * np.ones(3), imu_q_IG=euler2quat(data.get_attitude(0)), imu_v_G=data.get_inertial_velocity(0), cam_model=cam_model, ext_p_IC=np.array([0.0, 0.0, 0.0]), ext_q_CI=np.array([0.5, -0.5, 0.5, -0.5])) # Setup state history storage and covariance plot pos_est = msckf.imu_state.p_G vel_est = msckf.imu_state.v_G att_est = quat2euler(msckf.imu_state.q_IG) # Loop through data for i in range(1, len(data.oxts)): # MSCKF prediction and measurement update a_m, w_m = data.get_imu_measurements(i) dt = data.get_dt(i) msckf.prediction_update(a_m, w_m, dt) msckf.augment_state() # Store history pos = msckf.imu_state.p_G vel = msckf.imu_state.v_G att = quat2euler(msckf.imu_state.q_IG) pos_est = np.hstack((pos_est, pos)) vel_est = np.hstack((vel_est, vel)) att_est = np.hstack((att_est, att)) # Plot # debug = True debug = False if debug: # Position self.plot_position(data.get_local_position(), pos_est, msckf.cam_states) # Velocity self.plot_velocity(data.get_timestamps(), data.get_inertial_velocity(), vel_est) # Attitude self.plot_attitude(data.get_timestamps(), data.get_attitude(), att_est) # data.plot_accelerometer() # data.plot_gyroscope() plt.show()
def test_sandbox(self): p_I_C = np.array([1.0, 2.0, 3.0]) p_G_I = np.array([1.0, 0.0, 0.0]) rpy_IG = np.array([deg2rad(0.0), deg2rad(0.0), deg2rad(0.0)]) q_IG = euler2quat(rpy_IG) C_IG = C(q_IG) print(p_G_I + np.dot(C_IG, p_I_C))
def test_residualize_track(self): # Camera states # -- Camera state 0 p_G_C0 = np.array([0.0, 0.0, 0.0]) rpy_C0G = np.array([deg2rad(0.0), deg2rad(0.0), deg2rad(0.0)]) q_C0G = euler2quat(rpy_C0G) C_C0G = C(q_C0G) # -- Camera state 1 p_G_C1 = np.array([1.0, 1.0, 0.0]) rpy_C1G = np.array([deg2rad(0.0), deg2rad(0.0), deg2rad(0.0)]) q_C1G = euler2quat(rpy_C1G) C_C1G = C(q_C1G) # Features landmark = np.array([0.0, 0.0, 10.0]) kp1 = self.cam_model.project(landmark, C_C0G, p_G_C0)[0:2] kp2 = self.cam_model.project(landmark, C_C1G, p_G_C1)[0:2] # Setup feature track track_id = 0 frame_id = 1 data1 = KeyPoint(kp1, 21) data2 = KeyPoint(kp2, 21) track = FeatureTrack(track_id, frame_id, data1, data2) # Setup track cam states self.msckf.augment_state() self.msckf.min_track_length = 2 self.msckf.cam_states[0].p_G = p_G_C0.reshape((3, 1)) self.msckf.cam_states[0].q_CG = q_C0G.reshape((4, 1)) self.msckf.cam_states[1].p_G = p_G_C1.reshape((3, 1)) self.msckf.cam_states[1].q_CG = q_C1G.reshape((4, 1)) print(self.msckf.cam_states[0]) print(self.msckf.cam_states[1]) # Test # self.msckf.enable_ns_trick = False H_o_j, r_o_j, R_o_j = self.msckf.residualize_track(track) plt.matshow(H_o_j) plt.show()
def test_estimate(self): estimator = DatasetFeatureEstimator() # Pinhole Camera model image_width = 640 image_height = 480 fov = 60 fx, fy = focal_length(image_width, image_height, fov) cx, cy = (image_width / 2.0, image_height / 2.0) K = camera_intrinsics(fx, fy, cx, cy) cam_model = PinholeCameraModel(image_width, image_height, K) # Camera states track_cam_states = [] # -- Camera state 0 p_G_C0 = np.array([0.0, 0.0, 0.0]) rpy_C0G = np.array([deg2rad(0.0), deg2rad(0.0), deg2rad(0.0)]) q_C0G = euler2quat(rpy_C0G) C_C0G = C(q_C0G) track_cam_states.append(CameraState(0, q_C0G, p_G_C0)) # -- Camera state 1 p_G_C1 = np.array([1.0, 0.0, 0.0]) rpy_C1G = np.array([deg2rad(0.0), deg2rad(0.0), deg2rad(0.0)]) q_C1G = euler2quat(rpy_C1G) C_C1G = C(q_C1G) track_cam_states.append(CameraState(1, q_C1G, p_G_C1)) # Feature track p_G_f = np.array([[0.0], [0.0], [10.0]]) kp0 = KeyPoint(cam_model.project(p_G_f, C_C0G, p_G_C0)[0:2], 0) kp1 = KeyPoint(cam_model.project(p_G_f, C_C1G, p_G_C1)[0:2], 0) track = FeatureTrack(0, 1, kp0, kp1, ground_truth=p_G_f) estimate = estimator.estimate(cam_model, track, track_cam_states) self.assertTrue(np.allclose(p_G_f.ravel(), estimate.ravel(), atol=0.1))
def test_prediction_update2(self): # Setup dataset = DatasetGenerator() # Initialize MSCKF msckf = MSCKF(n_g=1e-6 * np.ones(3), n_a=1e-6 * np.ones(3), n_wg=1e-6 * np.ones(3), n_wa=1e-6 * np.ones(3), imu_q_IG=dataset.vel, imu_v_G=euler2quat(np.zeros((3, 1))), cam_model=dataset.cam_model, ext_p_IC=np.array([0.0, 0.0, 0.0]), ext_q_CI=np.array([0.0, 0.0, 0.0, 1.0])) # Loop through data for i in range(1, 30): # MSCKF prediction and measurement update a_m, w_m = dataset.step() dt = dataset.dt msckf.prediction_update(a_m, w_m, dt) # Plot # debug = True debug = False if debug: # Position self.plot_position(dataset.pos_true, msckf.pos_est, msckf.cam_states) # Velocity self.plot_velocity(dataset.time_true, dataset.vel_true, msckf.vel_est) # Attitude self.plot_attitude(dataset.time_true, dataset.rpy_true, msckf.att_est) # data.plot_accelerometer() # data.plot_gyroscope() plt.show()
def test_measurement_update2(self): # Setup # data = RawSequence(RAW_DATASET, "2011_09_26", "0001") data = RawSequence(RAW_DATASET, "2011_09_26", "0005") # data = RawSequence(RAW_DATASET, "2011_09_26", "0046") # data = RawSequence(RAW_DATASET, "2011_09_26", "0036") K = data.calib_cam2cam["P_rect_00"].reshape((3, 4))[0:3, 0:3] cam_model = PinholeCameraModel(1242, 375, K) # Initialize MSCKF v0 = data.get_inertial_velocity(0) q0 = euler2quat(data.get_attitude(0)) msckf = MSCKF(n_g=4e-2 * np.ones(3), n_a=4e-2 * np.ones(3), n_wg=1e-6 * np.ones(3), n_wa=1e-6 * np.ones(3), imu_q_IG=q0, imu_v_G=v0, cam_model=cam_model, ext_p_IC=np.zeros((3, 1)), ext_q_CI=np.array([0.49921, -0.49657, 0.50291, -0.50129])) # cov_plot = PlotMatrix(msckf.P()) # plt.show(block=False) # Initialize feature tracker img = cv2.imread(data.image_00_files[0]) tracker = FeatureTracker() tracker.update(img) # Setup state history storage and covariance plot pos_est = msckf.imu_state.p_G vel_est = msckf.imu_state.v_G att_est = quat2euler(msckf.imu_state.q_IG) # Loop through data # for i in range(1, 100): for i in range(1, len(data.oxts)): print("frame %d" % i) # Track features img = cv2.imread(data.image_00_files[i]) # tracker.update(img, True) # key = cv2.waitKey(1) # if key == 113: # exit(0) tracker.update(img) tracks = tracker.remove_lost_tracks() # Accelerometer and gyroscope and dt measurements a_m, w_m = data.get_imu_measurements(i) dt = data.get_dt(i) # MSCKF prediction and measurement update msckf.prediction_update(a_m, w_m, dt) msckf.measurement_update(tracks) # cov_plot.update(msckf.P()) # Store history pos = msckf.imu_state.p_G vel = msckf.imu_state.v_G att = quat2euler(msckf.imu_state.q_IG) pos_est = np.hstack((pos_est, pos)) vel_est = np.hstack((vel_est, vel)) att_est = np.hstack((att_est, att)) # Plot debug = True # debug = False if debug: # Position self.plot_position(data.get_local_position(), pos_est, msckf.cam_states) # Velocity self.plot_velocity(data.get_timestamps(), data.get_inertial_velocity(), vel_est) # Attitude self.plot_attitude(data.get_timestamps(), data.get_attitude(), att_est) # data.plot_accelerometer() # data.plot_gyroscope() plt.show()
def test_measurement_update(self): # Setup np.random.seed(0) dataset = DatasetGenerator(dt=0.1) # Initialize MSCKF msckf = MSCKF(n_g=4.2e-2 * np.ones(3), n_a=4.2e-2 * np.ones(3), n_wg=1e-6 * np.ones(3), n_wa=1e-6 * np.ones(3), imu_q_IG=euler2quat(np.zeros((3, 1))), imu_v_G=dataset.vel, cam_model=dataset.cam_model, ext_p_IC=np.array([0.0, 0.0, 0.0]), ext_q_CI=np.array([0.5, -0.5, 0.5, -0.5])) # feature_estimator=DatasetFeatureEstimator()) # msckf.enable_qr_trick = True # msckf.enable_ns_trick = True # cov_plot = PlotMatrix(msckf.P()) # gain_plot = PlotMatrix(msckf.K) # plt.show(block=False) # Setup state history storage and covariance plot pos_est = msckf.imu_state.p_G vel_est = msckf.imu_state.v_G att_est = quat2euler(msckf.imu_state.q_IG) dataset.step() # Loop through data for i in range(1, 100): # Prediction update a_m, w_m = dataset.step() dt = dataset.dt msckf.prediction_update(a_m, w_m, dt) # msckf.imu_state.v_G = dataset.vel # msckf.imu_state.p_G = dataset.pos # Measurement update tracks = dataset.remove_lost_tracks() retval = msckf.measurement_update(tracks) # if retval == 'q': # break # cov_plot.update(msckf.P()) # gain_plot.update(msckf.K) # Record states pos = msckf.imu_state.p_G vel = msckf.imu_state.v_G att = quat2euler(msckf.imu_state.q_IG) pos_est = np.hstack((pos_est, pos)) vel_est = np.hstack((vel_est, vel)) att_est = np.hstack((att_est, att)) print("frame: %d, window size: %d, updated?: %r" % (i, len(msckf.cam_states), retval)) # Plot debug = True # debug = False if debug: # Position self.plot_position(dataset.pos_true, pos_est, msckf.cam_states) # Velocity self.plot_velocity(dataset.time_true, dataset.vel_true, vel_est) # Attitude self.plot_attitude(dataset.time_true, dataset.att_true, att_est) # data.plot_accelerometer() # data.plot_gyroscope() plt.show()
def test_update(self): # Setup dataset data = RawSequence(RAW_DATASET, "2011_09_26", "0005") v0 = data.get_inertial_velocity(0) q0 = euler2quat(data.get_attitude(0)) # Setup IMU state n_g = np.ones((3, 1)) * 0.01 # Gyro Noise n_a = np.ones((3, 1)) * 0.02 # Accel Noise n_wg = np.ones((3, 1)) * 0.03 # Gyro Random Walk Noise n_wa = np.ones((3, 1)) * 0.04 # Accel Random Walk Noise n_imu = np.block([[n_g], [n_wg], [n_a], [n_wa]]) q_IG = q0 b_g = np.zeros((3, 1)) v_G = v0 b_a = np.zeros((3, 1)) p_G = np.zeros((3, 1)) imu_state = IMUState(q_IG, b_g, v_G, b_a, p_G, n_imu) # Setup state history storage and covariance plot pos_est = imu_state.p_G vel_est = imu_state.v_G att_est = quat2euler(imu_state.q_IG) # labels = ["theta_x", "theta_y", "theta_z", # "bx_g", "by_g", "bz_g", # "vx", "vy", "vz", # "bx_a", "by_a", "bz_a", # "px", "py", "pz"] # P_plot = PlotMatrix(imu_state.P, # labels=labels, # show_ticks=True, # # show=True) # show=False) # fig = plt.figure() # ax = fig.add_subplot(111) # plt.show(block=False) # Loop through data for i in range(1, len(data.oxts)): a_m, w_m = data.get_imu_measurements(i) dt = data.get_dt(i) imu_state.update(a_m, w_m, dt) # P_plot.update(imu_state.P) # plot_error_ellipse(imu_state.p_G[0:2]) # mean = imu_state.p_G[0:2].ravel() # cov = imu_state.P[12:14, 12:14] # ax.clear() # plot_error_ellipse(mean, cov, ax) # fig.canvas.draw() pos = imu_state.p_G vel = imu_state.v_G att = quat2euler(imu_state.q_IG) pos_est = np.hstack((pos_est, pos)) vel_est = np.hstack((vel_est, vel)) att_est = np.hstack((att_est, att)) # Plot # debug = True debug = False if debug: self.plot_position(data.get_local_position(), pos_est) self.plot_velocity(data.get_timestamps(), data.get_inertial_velocity(), vel_est) self.plot_attitude(data.get_timestamps(), data.get_attitude(), att_est) plt.show()
def test_estimate2(self): # Load RAW KITTI dataset data = RawSequence(RAW_DATASET, "2011_09_26", "0001") # data = RawSequence(RAW_DATASET, "2011_09_26", "0046") # data = RawSequence(RAW_DATASET, "2011_09_26", "0005") K = data.calib_cam2cam["P_rect_00"].reshape((3, 4))[0:3, 0:3] cam_model = PinholeCameraModel(1242, 375, K) # Initialize feature tracker img = cv2.imread(data.image_00_files[0]) tracker = FeatureTracker() tracker.update(img) # Setup plot features = None features_plot = None pos_data = data.get_local_position(0) debug = False if debug: fig = plt.figure() plt.ion() ax = fig.add_subplot(111) pos_plot = ax.plot(pos_data[0], pos_data[1], marker=".", color="blue")[0] # ax.set_xlim([-60.0, 5.0]) # ax.set_ylim([-60.0, 5.0]) ax.set_xlim([0.0, 50.0]) ax.set_ylim([-100.0, 0.0]) fig.canvas.draw() plt.show(block=False) # Setup feature tracks tracks = [] for i in range(1, 10): # Track features img = cv2.imread(data.image_00_files[i]) tracker.update(img, True) if cv2.waitKey(1) == 113: exit(0) tracks = tracker.remove_lost_tracks() # Loop feature tracks p_G_f = None for track in tracks: if track.tracked_length() < 8: continue # Setup feature track camera states track_cam_states = [] for j in range(track.tracked_length()): frame_id = track.frame_start + j imu_q_IG = euler2quat(data.get_attitude(frame_id)) imu_p_G = data.get_local_position(frame_id) ext_q_CI = np.array([0.5, -0.5, 0.5, -0.5]) cam_q_IG = dot(quatlcomp(ext_q_CI), imu_q_IG) cam_p_G = imu_p_G cam_state = CameraState(frame_id, cam_q_IG, cam_p_G) track_cam_states.append(cam_state) # Estimate feature track p_G_f = self.estimator.estimate(cam_model, track, track_cam_states) if p_G_f is not None: C_CG = C(track_cam_states[-1].q_CG) p_G_C = track_cam_states[-1].p_G p_C_f = dot(C_CG, (p_G_f - p_G_C)) print("p_G_f: ", p_G_f.ravel()) print("p_C_f: ", p_C_f.ravel()) print() # Plot pos = data.get_local_position(i) pos_data = np.hstack((pos_data, pos)) if debug: if features is None and p_G_f is not None: features = p_G_f features_plot = ax.plot(p_G_f[0], p_G_f[1], marker="x", color="red", ls='')[0] elif p_G_f is not None: features = np.hstack((features, p_G_f)) features_plot.set_xdata(features[0, :]) features_plot.set_ydata(features[1, :]) pos_plot.set_xdata(pos_data[0, :]) pos_plot.set_ydata(pos_data[1, :]) ax.relim() ax.autoscale_view(True, True, True) fig.canvas.draw()