def main():
    """ starting import """

    # get argument
    parser = argparse.ArgumentParser()
    parser.add_argument("input_json", type=str, help="JSON file to process")
    args = parser.parse_args()

    # transform data into dataframe
    for row in data_iter(args.input_json):
        subset_amterdam.append(row)
        result = pd.DataFrame(subset_amterdam)

    # lower all column names
    result.columns = result.columns.str.lower()

    # aggregating numbers per group
    result = result.groupby(
        ['date_of_publication', 'municipality_code', 'municipality_name', 'province']).agg(
        total_reported = ('total_reported','sum'),
        hospital_admission  = ('hospital_admission','sum'),
        deceased  = ('deceased','sum'),
        ).reset_index()

    log.info(f"Starting import {args.input_json}")

    engine = get_engine()

    result.to_sql(
        "corona_gevallen_new",
        engine,
        dtype={
            "index": Integer(),
            "date_of_publication": Date(),
            "municipality_code": String(),
            "municipality_name": String(),
            "province": String(),
            "total_reported": Integer(),
            "hospital_admission": Integer(),
            "deceased": Integer(),
        },
    )
    log.info("Data loaded into DB")

    ProvenanceRenameOperator(
        task_id="provenance_rename",
        dataset_name="corona",
        prefix_table_name="corona_",
        postfix_table_name="_new",
        rename_indexes=False,
        pg_schema="public",
    ).execute()
    log.info("Renamed columns based on provenance.")
示例#2
0
            tmp_dir / "cmsa_sensor_new.sql",
            tmp_dir / "cmsa_locatie_new.sql",
        ],
    )

    # 8. Create target tables: Markering (join between Sensor en Locatie)
    fill_markering = PostgresFilesOperator(
        task_id="insert_into_table_markering",
        sql_files=[f"{sql_path}/cmsa_data_insert_markering.sql"],
    )

    # 9. RENAME columns based on PROVENANCE
    provenance_translation = ProvenanceRenameOperator(
        task_id="provenance_rename",
        dataset_name=dag_id,
        prefix_table_name=f"{dag_id}_",
        postfix_table_name="_new",
        rename_indexes=False,
        pg_schema="public",
    )

    # 10. Rename temp named tables to final names
    rename_tables = PostgresOperator(task_id="rename_tables", sql=SQL_TABLE_RENAMES)

    # 11. Grant database permissions
    grant_db_permissions = PostgresPermissionsOperator(task_id="grants", dag_name=dag_id)


(
    slack_at_start
    >> mkdir
    >> download_geojson
        task_id="load_dump_file",
        container="Dataservices",
        object_id=f"afval_huishoudelijk/{DATASTORE_TYPE}/"
        "afval_api.zip",
        swift_conn_id="objectstore_dataservices",
        # optionals
        # db_target_schema will create the schema if not present
        db_target_schema="pte",
    )

    # 4. DUMP FILE SOURCE
    # Make the provenance translations
    provenance_file_data = ProvenanceRenameOperator(
        task_id="provenance_file",
        dataset_name="huishoudelijkafval",
        subset_tables=f"{tables['dump_file']}",
        pg_schema="pte",
        rename_indexes=True,
    )

    # 5. DUMP FILE SOURCE
    # Swap tables to target schema public
    swap_schema = SwapSchemaOperator(task_id="swap_schema",
                                     dataset_name="huishoudelijkafval",
                                     subset_tables=tables['dump_file'])

    # 6. DWH STADSDELEN SOURCE
    # Load voertuigenplanning data into DB
    load_dwh = PythonOperator(
        task_id="load_from_dwh_stadsdelen",
        python_callable=load_from_dwh,
示例#4
0
    create_table = BashOperator(
        task_id="create_table",
        bash_command=f"psql {pg_params()} < {tmp_dir}/{dag_id}.utf8.sql",
    )

    # 6. DROP Exisiting TABLE
    drop_table = PostgresOperator(
        task_id="drop_existing_table",
        sql=[
            f"DROP TABLE IF EXISTS {dag_id}_{dag_id} CASCADE",
        ],
    )

    # 7. RENAME COLUMNS based on PROVENANCE
    provenance_translation = ProvenanceRenameOperator(task_id="rename_columns",
                                                      dataset_name=dag_id,
                                                      pg_schema="public")

    # 8. RENAME TABLE
    rename_table = PostgresTableRenameOperator(
        task_id="rename_table",
        old_table_name=dag_id,
        new_table_name=f"{dag_id}_{dag_id}",
    )

    # 8. ADD missing COLUMNS in source
    add_category = PostgresOperator(
        task_id="add_columns",
        sql=ADD_CATEGORIE_CATEGORIENAAM,
        params=dict(tablename=f"{dag_id}_{dag_id}"),
    )
示例#5
0
    # 3. load the dump file
    swift_load_task = SwiftLoadSqlOperator(
        task_id="swift_load_task",
        container="Dataservices",
        object_id=f"varen/{DATASTORE_TYPE}/varen.zip",
        swift_conn_id="objectstore_dataservices",
        # optionals
        # db_target_schema will create the schema if not present
        db_target_schema="pte",
    )

    # 4. Make the provenance translations
    provenance_renames = ProvenanceRenameOperator(
        task_id="provenance_renames",
        dataset_name="varen",
        pg_schema="pte",
        rename_indexes=True,
    )

    # 5. Swap tables to target schema public
    swap_schema = SwapSchemaOperator(task_id="swap_schema", dataset_name="varen")

    # 6. Grant database permissions
    grant_db_permissions = PostgresPermissionsOperator(
        task_id="grants",
        dag_name=dag_id
    )

# FLOW

slack_at_start >> drop_tables >> swift_load_task >> provenance_renames >> swap_schema >> grant_db_permissions
示例#6
0
        ) for key in files_to_download.keys()
    ]

    # 7. Remove unnecessary cols
    remove_cols = [
        PostgresOperator(
            task_id=f"remove_cols_{key}",
            sql=REMOVE_COLS,
            params=dict(tablename=f"{key}"),
        ) for key in files_to_download.keys()
    ]

    # 8. Rename COLUMNS based on Provenance
    provenance_translation = ProvenanceRenameOperator(
        task_id="rename_columns",
        dataset_name=f"{dag_id}",
        rename_indexes=False,
        pg_schema="public",
    )

    # 9. Add PDF hyperlink only for table bominslag and verdachtgebied
    add_hyperlink_pdf = [
        PostgresOperator(
            task_id=f"add_hyperlink_pdf_{table}",
            sql=ADD_HYPERLINK_PDF,
            params=dict(tablename=f"{table}"),
        ) for table in ("bominslag", "verdachtgebied")
    ]

    # 10. Dummy operator acts as an interface between parallel tasks to another parallel tasks with different number of lanes
    #  (without this intermediar, Airflow will give an error)
    Interface2 = DummyOperator(task_id="interface2")
def create_basiskaart_dag(is_first, table_name, select_statement):
    """ 
    DAG generator: Generates a DAG for each table.
    The table_name is the target table in de masterDB where the data will be inserted.
    The select_statement is one of the imported SQL query selects (see above) that will be executed on the source DB.    
    """
    # start time first DAG
    # Note: the basiskaartimport task in Jenkins runs at an arbitrary but invariant time between 3 and 5 a.m.
    # Because of this, the first DAG starts running at 7 a.m.
    schedule_start_hour = 7

    dag = DAG(
        f"{dag_id}_{table_name}",
        default_args={
            "owner": owner,
            **default_args
        },
        # the first DAG will have the is_first boolean set to True
        # the other DAG's will be triggered to start when the previous DAG is finished (estafette run / relay run)
        schedule_interval=f"0 {schedule_start_hour} * * *"
        if is_first else None,
        description=
        """basisregistratie grootschalige topologie (BGT) en kleinschalige basiskaart (KBK10 en 50). 
        The basiskaart data is collected from basiskaart DB.""",
        tags=["basiskaart"],
    )

    with dag:

        # 1. Post info message on slack
        slack_at_start = MessageOperator(
            task_id="slack_at_start",
            http_conn_id="slack",
            webhook_token=slack_webhook_token,
            message=f"Starting {dag_id} ({DATAPUNT_ENVIRONMENT})",
            username="******",
        )

        # 2. Create temp and target table
        create_tables = PostgresOperator(
            task_id="create_tables",
            sql=CREATE_TABLES,
            params=dict(base_table=table_name, dag_id=dag_id),
        )

        # 3. Copy data into temp table
        copy_data = PythonOperator(
            task_id="insert_data",
            python_callable=create_tables_from_basiskaartdb_to_masterdb,
            op_kwargs={
                "source_connection": source_connection,
                "source_select_statement": globals()[select_statement],
                "target_base_table": f"{dag_id}_{table_name}_temp",
            },
            dag=dag,
        )

        # 4. Check for changes in temp table to merge in target table
        change_data_capture = PgComparatorCDCOperator(
            task_id="change_data_capture",
            source_table=f"{dag_id}_{table_name}_temp",
            target_table=f"{dag_id}_{table_name}")

        # 5. Create mviews for T-REX tile server
        create_mviews = PostgresOperator(
            task_id="create_mviews",
            sql=CREATE_MVIEWS,
            params=dict(base_table=table_name, dag_id=dag_id),
        )

        # 6. Rename COLUMNS based on Provenance
        provenance_translation = ProvenanceRenameOperator(
            task_id="rename_columns",
            dataset_name=f"{dag_id}",
            prefix_table_name=f"{dag_id}_",
            rename_indexes=False,
            pg_schema="public",
        )

        # 7. Drop temp table
        clean_up = PostgresOperator(
            task_id="drop_temp_table",
            sql=[
                f"DROP TABLE IF EXISTS {dag_id}_{table_name}_temp CASCADE",
            ],
        )

        # 8. Trigger next DAG to run (estafette)
        trigger_next_dag = TriggerDynamicDagRunOperator(
            task_id="trigger_next_dag",
            dag_id_prefix=f"{dag_id}_",
            trigger_rule="all_done",
        )

    # Flow
    slack_at_start >> create_tables >> copy_data >> change_data_capture >> create_mviews >> provenance_translation >> clean_up >> trigger_next_dag

    dag.doc_md = """
    #### DAG summery
    This DAG containts BGT (basisregistratie grootschalige topografie) and KBK10 (kleinschalige basiskaart 10) and KBK50 (kleinschalige basiskaart 50) data
    #### Mission Critical
    Classified as 2 (beschikbaarheid [range: 1,2,3])
    #### On Failure Actions
    Fix issues and rerun dag on working days
    #### Point of Contact
    Inform the businessowner at [businessowner]@amsterdam.nl
    #### Business Use Case / process / origin
    NA
    #### Prerequisites/Dependencies/Resourcing
    https://api.data.amsterdam.nl/v1/docs/datasets/basiskaart.html
    Note: The basiskaart data is collected from the GOB objectstore and processed in the basiskaart DB => which is the source for this DAG.
    """

    return dag
            COLNAMES_CHECK.make_check(
                check_id=f"colname_check_{table_name}",
                parameters=["pte", table_name],
                pass_value=field_names,
                result_checker=operator.ge,
            )
        )

        checks.append(
            GEO_CHECK.make_check(
                check_id=f"geo_check_{table_name}",
                params=dict(
                    table_name=f"pte.{table_name}",
                    geo_column="geometrie",
                    geotype=geo_type,
                ),
                pass_value=1,
            )
        )

    multi_check = PostgresMultiCheckOperator(task_id="multi_check", checks=checks)

    rename_columns = ProvenanceRenameOperator(
        task_id="rename_columns", dataset_name="rioolnetwerk", pg_schema="pte"
    )

    rename_tables = PostgresOperator(task_id="rename_tables", sql=RENAME_TABLES_SQL,)


slack_at_start >> drop_tables >> swift_load_task >> multi_check >> rename_columns >> rename_tables
示例#9
0
        python_callable=load_from_dwh,
        op_args=[f"{dag_id}_new"],
    )

    # 3. Check minimum number of records
    check_count = PostgresCheckOperator(
        task_id="check_count",
        sql=SQL_CHECK_COUNT,
        params=dict(tablename=f"{dag_id}_new", mincount=5000),
    )

    # 4. Rename COLUMNS based on provenance (if specified)
    provenance_dwh_data = ProvenanceRenameOperator(
        task_id="provenance_dwh",
        dataset_name=data_schema_id,
        prefix_table_name=f"{data_schema_id}_",
        postfix_table_name="_new",
        rename_indexes=False,
        pg_schema="public",
    )

    # 5.
    # Create the DB target table (as specified in the JSON data schema)
    # if table not exists yet
    create_tables = SqlAlchemyCreateObjectOperator(
        task_id="create_table",
        data_schema_name=data_schema_id,
        data_table_name=dag_id,
        ind_table=True,
        # when set to false, it doesn't create indexes; only tables
        ind_extra_index=True,
    )
        input_file=f"{tmp_dir}/{shp_file}",
        s_srs=None,
        t_srs="EPSG:28992",
        auto_detect_type="YES",
        geometry_name="geometrie",
        mode="PostgreSQL",
        fid="id",
        db_conn=db_conn,
    )

    # 6. RENAME columns based on PROVENANCE
    provenance_trans = ProvenanceRenameOperator(
        task_id="provenance_rename",
        dataset_name=schema_name,
        prefix_table_name=f"{schema_name}_",
        postfix_table_name="_new",
        subset_tables=["".join(table_name)],
        rename_indexes=False,
        pg_schema="public",
    )

    # Prepare the checks and added them per source to a dictionary
    total_checks.clear()
    count_checks.clear()

    count_checks.append(
        COUNT_CHECK.make_check(
            check_id="count_check",
            pass_value=1,
            params=dict(table_name=f"{schema_name}_{table_name}_new"),
            result_checker=operator.ge,
        pg_schema="pte",
    )

    # 3. load the dump file
    swift_load_task = SwiftLoadSqlOperator(
        task_id="swift_load_task",
        container="Dataservices",
        object_id=f"afval_huishoudelijk/{DATASTORE_TYPE}/"
        "afval_api.zip",
        swift_conn_id="objectstore_dataservices",
        # optionals
        # db_target_schema will create the schema if not present
        db_target_schema="pte",
    )

    # 4. Make the provenance translations
    provenance_renames = ProvenanceRenameOperator(
        task_id="provenance_renames",
        dataset_name="huishoudelijkafval",
        pg_schema="pte",
        rename_indexes=True,
    )

    # 5. Swap tables to target schema public
    swap_schema = SwapSchemaOperator(task_id="swap_schema",
                                     dataset_name="huishoudelijkafval")

# FLOW

slack_at_start >> drop_tables >> swift_load_task >> provenance_renames >> swap_schema