示例#1
0
    def adjoint(self, inputs, outputs):
        """The adjoint operator.

        Reads from inputs and writes to outputs.
        """
        self.init_kernel()
        if self.implementation == Impl['halide'] and \
                (len(self.shape) == 2 or (len(self.shape) == 3 and self.dims == 2)):

            # Halide implementation
            tmpin = np.asfortranarray(inputs[0].astype(np.float32))
            Halide('At_conv.cpp').At_conv(tmpin, self.kernel, self.tmpout)  # Call
            np.copyto(outputs[0], self.tmpout)

        else:

            # Default numpy using FFT
            U = fftd(inputs[0], self.dims)
            U *= self.adjoint_kernel
            np.copyto(outputs[0], ifftd(U, self.dims).real)
示例#2
0
文件: conv.py 项目: PeterZs/ProxImaL
    def adjoint(self, inputs, outputs):
        """The adjoint operator.

        Reads from inputs and writes to outputs.
        """
        self.init_kernel()
        if self.implementation == Impl['halide'] and \
                (len(self.shape) == 2 or (len(self.shape) == 3 and self.dims == 2)):

            # Halide implementation
            tmpin = np.asfortranarray(inputs[0].astype(np.float32))
            Halide('At_conv.cpp').At_conv(tmpin, self.kernel, self.tmpout)  # Call
            np.copyto(outputs[0], self.tmpout)

        else:

            # Default numpy using FFT
            U = fftd(inputs[0], self.dims)
            U *= self.adjoint_kernel
            np.copyto(outputs[0], ifftd(U, self.dims).real)
示例#3
0
    def forward(self, inputs, outputs):
        """The forward operator.

        Reads from inputs and writes to outputs.
        """
        self.init_kernel()
        if self.implementation == Impl['halide'] and \
                (len(self.shape) == 2 or (len(self.shape) == 3 and self.dims == 2)):

            # Halide implementation
            Halide('A_conv').A_conv(inputs[0], self.kernel,
                                    self.tmpout)  # Call
            np.copyto(outputs[0], self.tmpout)

        else:

            # Default numpy using FFT
            X = fftd(inputs[0], self.dims)
            X *= self.forward_kernel
            np.copyto(outputs[0], ifftd(X, self.dims).real)
示例#4
0
    def solve(self, b, rho=None, v=None, lin_solver="lsqr", *args, **kwargs):
        # KtK Operator is diagonal
        if self.diag is not None:

            Ktb = np.zeros(self.K.input_size)
            self.K.adjoint(b, Ktb)
            if rho is None:
                Ktb /= self.diag
            else:
                Ktb += (rho / 2.) * v
                Ktb /= (self.diag + rho / 2.)

            return Ktb

        # KtK operator is diagonal in frequency domain.
        elif self.freq_diag is not None:
            Ktb = np.zeros(self.K.input_size)
            self.K.adjoint(b, Ktb)

            # Frequency inversion
            if self.implementation == Impl['halide'] and \
                    (len(self.freq_shape) == 2 or
                     (len(self.freq_shape) == 2 and self.freq_dims == 2)):

                Halide('fft2_r2c.cpp').fft2_r2c(np.asfortranarray(np.reshape(
                    Ktb.astype(np.float32), self.freq_shape)), 0, 0, self.ftmp_halide)

                Ktb = 1j * self.ftmp_halide[..., 1]
                Ktb += self.ftmp_halide[..., 0]

                if rho is None:
                    Ktb /= self.freq_diag
                else:
                    Halide('fft2_r2c.cpp').fft2_r2c(np.asfortranarray(np.reshape(
                        v.astype(np.float32), self.freq_shape)), 0, 0, self.ftmp_halide)

                    vhat = self.ftmp_halide[..., 0] + 1j * self.ftmp_halide[..., 1]
                    Ktb *= 1.0 / rho
                    Ktb += vhat
                    Ktb /= (1.0 / rho * self.freq_diag + 1.0)

                # Do inverse tranform
                Ktb = np.asfortranarray(np.stack((Ktb.real, Ktb.imag), axis=-1))
                Halide('ifft2_c2r.cpp').ifft2_c2r(Ktb, self.ftmp_halide_out)

                return self.ftmp_halide_out.ravel()

            else:

                # General frequency inversion
                Ktb = fftd(np.reshape(Ktb, self.freq_shape), self.freq_dims)

                if rho is None:
                    Ktb /= self.freq_diag
                else:
                    Ktb *= 2.0 / rho
                    Ktb += fftd(np.reshape(v, self.freq_shape), self.freq_dims)
                    Ktb /= (2.0 / rho * self.freq_diag + 1.0)

                return (ifftd(Ktb, self.freq_dims).real).ravel()

        elif lin_solver == "lsqr":
            return self.solve_lsqr(b, rho, v, *args, **kwargs)
        elif lin_solver == "cg":
            return self.solve_cg(b, rho, v, *args, **kwargs)
        else:
            raise Exception("Unknown least squares solver.")
示例#5
0
    def solve(self, b, rho=None, v=None, lin_solver="lsqr", *args, **kwargs):
        # KtK Operator is diagonal
        if self.diag is not None:

            Ktb = np.zeros(self.K.input_size)
            self.K.adjoint(b, Ktb)
            if rho is None:
                Ktb /= self.diag
            else:
                Ktb += (rho / 2.) * v
                Ktb /= (self.diag + rho / 2.)

            return Ktb

        # KtK operator is diagonal in frequency domain.
        elif self.freq_diag is not None:
            Ktb = np.zeros(self.K.input_size)
            self.K.adjoint(b, Ktb)

            # Frequency inversion
            if self.implementation == Impl['halide'] and \
                    (len(self.freq_shape) == 2 or
                     (len(self.freq_shape) == 2 and self.freq_dims == 2)):

                Halide('fft2_r2c.cpp').fft2_r2c(
                    np.asfortranarray(
                        np.reshape(Ktb.astype(np.float32), self.freq_shape)),
                    0, 0, self.ftmp_halide)

                Ktb = 1j * self.ftmp_halide[..., 1]
                Ktb += self.ftmp_halide[..., 0]

                if rho is None:
                    Ktb /= self.freq_diag
                else:
                    Halide('fft2_r2c.cpp').fft2_r2c(
                        np.asfortranarray(
                            np.reshape(v.astype(np.float32), self.freq_shape)),
                        0, 0, self.ftmp_halide)

                    vhat = self.ftmp_halide[...,
                                            0] + 1j * self.ftmp_halide[..., 1]
                    Ktb *= 1.0 / rho
                    Ktb += vhat
                    Ktb /= (1.0 / rho * self.freq_diag + 1.0)

                # Do inverse tranform
                Ktb = np.asfortranarray(np.stack((Ktb.real, Ktb.imag),
                                                 axis=-1))
                Halide('ifft2_c2r.cpp').ifft2_c2r(Ktb, self.ftmp_halide_out)

                return self.ftmp_halide_out.ravel()

            else:

                # General frequency inversion
                Ktb = fftd(np.reshape(Ktb, self.freq_shape), self.freq_dims)

                if rho is None:
                    Ktb /= self.freq_diag
                else:
                    Ktb *= 2.0 / rho
                    Ktb += fftd(np.reshape(v, self.freq_shape), self.freq_dims)
                    Ktb /= (2.0 / rho * self.freq_diag + 1.0)

                return (ifftd(Ktb, self.freq_dims).real).ravel()

        elif lin_solver == "lsqr":
            return self.solve_lsqr(b, rho, v, *args, **kwargs)
        elif lin_solver == "cg":
            return self.solve_cg(b, rho, v, *args, **kwargs)
        else:
            raise Exception("Unknown least squares solver.")
示例#6
0
    def solve(self, b, rho=None, v=None, lin_solver="lsqr", *args, **kwargs):
        # KtK Operator is diagonal
        if self.diag is not None:

            Ktb = np.empty(self.K.input_size, dtype=b.dtype)
            self.K.adjoint(b, Ktb)
            if rho is None:
                Ktb /= self.diag
            else:
                ne.evaluate(
                    '(Ktb + v * half_rho) / (d + half_rho)',
                    {
                        'Ktb': Ktb,
                        'half_rho': rho * 0.5,
                        'v': np.zeros(Ktb.shape) if v is None else v,
                        'd': self.diag,
                    },
                    out=Ktb,
                    casting='unsafe',
                )

            return Ktb

        # KtK operator is diagonal in frequency domain.
        elif self.freq_diag is not None:
            Ktb = np.empty(self.K.input_size, dtype=np.float32, order='F')
            self.K.adjoint(b, Ktb)

            # Frequency inversion
            if self.implementation == Impl['halide'] and \
                    (len(self.freq_shape) == 2 or
                     (len(self.freq_shape) == 2 and self.freq_dims == 2)):

                Halide('fft2_r2c').fft2_r2c(Ktb.reshape(self.freq_shape), 0, 0,
                                            self.ftmp_halide)

                if rho is None:
                    ne.evaluate('F_Ktb / d', {
                        'F_Ktb': self.ftmp_halide,
                        'd': self.freq_diag,
                    },
                                out=self.ftmp_halide,
                                casting='unsafe')
                else:
                    F_Ktb = self.ftmp_halide.copy()

                    Halide('fft2_r2c').fft2_r2c(np.reshape(v, self.freq_shape),
                                                0, 0, self.ftmp_halide)
                    ne.evaluate('(F_Ktb / rho + x) / (d / rho + 1.0)', {
                        'F_Ktb': F_Ktb,
                        'x': self.ftmp_halide,
                        'rho': rho,
                        'd': self.freq_diag,
                    },
                                out=self.ftmp_halide,
                                casting='unsafe')

                # Do inverse tranform
                Halide('ifft2_c2r').ifft2_c2r(self.ftmp_halide,
                                              self.ftmp_halide_out)

                return self.ftmp_halide_out.ravel()

            else:

                # General frequency inversion
                Ktb = fftd(np.reshape(Ktb, self.freq_shape), self.freq_dims)

                if rho is None:
                    Ktb /= self.freq_diag
                else:
                    Ktb *= 2.0 / rho
                    Ktb += fftd(np.reshape(v, self.freq_shape), self.freq_dims)
                    Ktb /= (2.0 / rho * self.freq_diag + 1.0)

                return (ifftd(Ktb, self.freq_dims).real).ravel()

        elif lin_solver == "lsqr":
            return self.solve_lsqr(b, rho, v, *args, **kwargs)
        elif lin_solver == "cg":
            return self.solve_cg(b, rho, v, *args, **kwargs)
        else:
            raise Exception("Unknown least squares solver.")