def __init__(self, mu_start=None, mu_min=consts.TOLERANCE, tau=0.5, eps=consts.TOLERANCE, info=[], max_iter=10000, min_iter=1): super(NaiveCONESTA, self).__init__(info=info, max_iter=max_iter, min_iter=min_iter) self.mu_start = mu_start self.mu_min = mu_min self.tau = tau self.eps = eps # Copy the allowed info keys for FISTA. fista_info = list() for nfo in self.info_copy(): if nfo in FISTA.INFO_PROVIDED: fista_info.append(nfo) if Info.num_iter not in fista_info: fista_info.append(Info.num_iter) self.algorithm = FISTA(eps=eps, max_iter=max_iter, min_iter=min_iter, info=fista_info) self.num_iter = 0
class NaiveCONESTA(bases.ExplicitAlgorithm, bases.IterativeAlgorithm, bases.InformationAlgorithm): """A naïve implementation of COntinuation with NEsterov smoothing in a Soft-Thresholding Algorithm, or CONESTA for short. Parameters ---------- mu_start : Non-negative float. An optional initial value of mu. mu_min : Non-negative float. A "very small" mu to use when computing the stopping criterion. tau : Float, 0 < tau < 1. The rate at which eps is decreasing. Default is 0.5. eps : Positive float. Tolerance for the stopping criterion. info : List or tuple of utils.consts.Info. What, if any, extra run information should be stored. Default is an empty list, which means that no run information is computed nor returned. max_iter : Non-negative integer. Maximum allowed number of iterations. min_iter : Non-negative integer less than or equal to max_iter. Minimum number of iterations that must be performed. Default is 1. """ INTERFACES = [nesterov_properties.NesterovFunction, properties.Gradient, properties.StepSize, properties.ProximalOperator, properties.Continuation] INFO_PROVIDED = [Info.ok, Info.num_iter, Info.time, Info.fvalue, Info.mu, Info.converged] def __init__(self, mu_start=None, mu_min=consts.TOLERANCE, tau=0.5, eps=consts.TOLERANCE, info=[], max_iter=10000, min_iter=1): super(NaiveCONESTA, self).__init__(info=info, max_iter=max_iter, min_iter=min_iter) self.mu_start = mu_start self.mu_min = mu_min self.tau = tau self.eps = eps # Copy the allowed info keys for FISTA. fista_info = list() for nfo in self.info_copy(): if nfo in FISTA.INFO_PROVIDED: fista_info.append(nfo) if Info.num_iter not in fista_info: fista_info.append(Info.num_iter) self.algorithm = FISTA(eps=eps, max_iter=max_iter, min_iter=min_iter, info=fista_info) self.num_iter = 0 @bases.force_reset @bases.check_compatibility def run(self, function, beta): # self.info.clear() if self.info_requested(Info.ok): self.info_set(Info.ok, False) if self.mu_start is None: mu = function.estimate_mu(beta) else: mu = self.mu_start # We use 2x as in Chen et al. (2012). eps = 2.0 * function.eps_max(mu) function.set_mu(self.mu_min) tmin = function.step(beta) function.set_mu(mu) if self.info_requested(Info.mu): mu = [mu] if self.info_requested(Info.time): t = [] if self.info_requested(Info.fvalue): f = [] if self.info_requested(Info.converged): self.info_set(Info.converged, False) i = 0 while True: tnew = function.step(beta) self.algorithm.set_params(step=tnew, eps=eps, max_iter=self.max_iter - self.num_iter) # self.fista_info.clear() beta = self.algorithm.run(function, beta) self.num_iter += self.algorithm.num_iter if Info.time in self.algorithm.info: tval = self.algorithm.info_get(Info.time) if Info.fvalue in self.algorithm.info: fval = self.algorithm.info_get(Info.fvalue) if self.info_requested(Info.time): t = t + tval if self.info_requested(Info.fvalue): f = f + fval old_mu = function.set_mu(self.mu_min) # Take one ISTA step for use in the stopping criterion. beta_tilde = function.prox(beta - tmin * function.grad(beta), tmin) function.set_mu(old_mu) if (1.0 / tmin) * maths.norm(beta - beta_tilde) < self.eps: if self.info_requested(Info.converged): self.info_set(Info.converged, True) break if self.num_iter >= self.max_iter: break eps = max(self.tau * eps, consts.TOLERANCE) # if eps <= consts.TOLERANCE: # break if self.info_requested(Info.mu): mu_new = max(self.mu_min, self.tau * mu[-1]) mu = mu + [mu_new] * len(fval) else: mu_new = max(self.mu_min, self.tau * mu) mu = mu_new print "eps:", eps, ", mu:", mu_new function.set_mu(mu_new) i = i + 1 if self.info_requested(Info.num_iter): self.info_set(Info.num_iter, i + 1) if self.info_requested(Info.time): self.info_set(Info.time, t) if self.info_requested(Info.fvalue): self.info_set(Info.fvalue, f) if self.info_requested(Info.mu): self.info_set(Info.mu, mu) if self.info_requested(Info.ok): self.info_set(Info.ok, True) return beta
def run(self, function, beta): # Copy the allowed info keys for FISTA. fista_info = list() for nfo in self.info_copy(): if nfo in FISTA.INFO_PROVIDED: fista_info.append(nfo) # if not self.fista_info.allows(Info.num_iter): # self.fista_info.add_key(Info.num_iter) # Create the inner algorithm. algorithm = FISTA(eps=self.eps, max_iter=self.max_iter, min_iter=self.min_iter, info=fista_info) if self.info_requested(Info.ok): self.info_set(Info.ok, False) if self.mu_start is None: mu = [function.estimate_mu(beta)] else: mu = [self.mu_start] function.set_mu(self.mu_min) tmin = function.step(beta) function.set_mu(mu[0]) max_eps = function.eps_max(mu[0]) G = min(max_eps, function.eps_opt(mu[0])) if self.info_requested(Info.time): t = [] if self.info_requested(Info.fvalue): f = [] if self.info_requested(Info.gap): Gval = [] if self.info_requested(Info.converged): self.info_set(Info.converged, False) i = 0 while True: stop = False tnew = function.step(beta) eps_plus = min(max_eps, function.eps_opt(mu[-1])) # print "current iterations: ", self.num_iter, \ # ", iterations left: ", self.max_iter - self.num_iter algorithm.set_params(step=tnew, eps=eps_plus, max_iter=self.max_iter - self.num_iter, conesta_stop=None) # conesta_stop=[self.mu_min]) # self.fista_info.clear() beta = algorithm.run(function, beta) #print "CONESTA loop", i, "FISTA=",self.fista_info[Info.num_iter], "TOT iter:", self.num_iter self.num_iter += algorithm.num_iter if Info.time in algorithm.info: tval = algorithm.info_get(Info.time) if Info.fvalue in algorithm.info: fval = algorithm.info_get(Info.fvalue) self.mu_min = min(self.mu_min, mu[-1]) tmin = min(tmin, tnew) old_mu = function.set_mu(self.mu_min) # Take one ISTA step for use in the stopping criterion. beta_tilde = function.prox(beta - tmin * function.grad(beta), tmin) function.set_mu(old_mu) if (1.0 / tmin) * maths.norm(beta - beta_tilde) < self.eps: if self.info_requested(Info.converged): self.info_set(Info.converged, True) stop = True if self.num_iter >= self.max_iter: stop = True if self.info_requested(Info.time): gap_time = utils.time_cpu() if self.dynamic: G_new = function.gap(beta, eps=eps_plus, max_iter=self.max_iter - self.num_iter) # TODO: Warn if G_new < 0. G_new = abs(G_new) # Just in case ... if G_new < G: G = G_new else: G = self.tau * G else: # Static G = self.tau * G if self.info_requested(Info.time): gap_time = utils.time_cpu() - gap_time tval[-1] += gap_time t = t + tval if self.info_requested(Info.fvalue): f = f + fval if self.info_requested(Info.gap): Gval.append(G) if (G <= consts.TOLERANCE and mu[-1] <= consts.TOLERANCE) or stop: break mu_new = min(mu[-1], function.mu_opt(G)) self.mu_min = min(self.mu_min, mu_new) if self.info_requested(Info.mu): mu = mu + [max(self.mu_min, mu_new)] * len(fval) else: mu.append(max(self.mu_min, mu_new)) function.set_mu(mu_new) i = i + 1 if self.info_requested(Info.num_iter): self.info_set(Info.num_iter, i + 1) if self.info_requested(Info.time): self.info_set(Info.time, t) if self.info_requested(Info.fvalue): self.info_set(Info.fvalue, f) if self.info_requested(Info.gap): self.info_set(Info.gap, Gval) if self.info_requested(Info.mu): self.info_set(Info.mu, mu) if self.info_requested(Info.ok): self.info_set(Info.ok, True) return beta