示例#1
0
def getDetectorInformation(exp, runnum, det):
    """ Returns the detector, the peak finding algorithm, and the number of events for
    this run.
    
    Arguments:
    exp -- the experiment name
    runnum -- the run number for this experiment
    det -- the detector used for this experiment
    """
    ds = psana.DataSource('exp=%s:run=%d:idx' % (exp, runnum))
    d = psana.Detector(det)
    d.do_reshape_2d_to_3d(flag=True)
    alg = PyAlgos(mask=None, pbits=0)
    alg.set_peak_selection_pars(npix_min=2,
                                npix_max=30,
                                amax_thr=300,
                                atot_thr=600,
                                son_min=10)
    hdr = '\nSeg  Row  Col  Npix    Amptot'
    fmt = '%3d %4d %4d  %4d  %8.1f'
    run = ds.runs().next()
    times = run.times()
    env = ds.env()
    numEvents = len(times)
    mask = d.mask(runnum,
                  calib=True,
                  status=True,
                  edges=True,
                  central=True,
                  unbond=True,
                  unbondnbrs=True)
    return [d, alg, hdr, fmt, numEvents, mask, times, env, run]
示例#2
0
    def algorithm(self, **kwargs):
        """ Initialize the peakfinding algorithim with keyword 
        arguments given by the user, then run the peakfinding 
        algorithm on random sets of experiment runs

        Arguments:
        **kwargs -- a dictionary of arguments containing peakfinding parameters
        """
        npxmin = kwargs["npix_min"]
        npxmax = kwargs["npix_max"]
        amaxthr = kwargs["amax_thr"]
        atotthr = kwargs["atot_thr"]
        sonmin = kwargs["son_min"]
        alg = PyAlgos(mask = None, pbits = 0)
        alg.set_peak_selection_pars(npix_min=npxmin, npix_max=npxmax, amax_thr=amaxthr, atot_thr=atotthr, son_min=sonmin) #(npix_min=2, npix_max=30, amax_thr=300, atot_thr=600, son_min=10)
        self.run(alg, **kwargs)
示例#3
0
def test_pf(tname):

    ##-----------------------------

    PF = V4  # default
    if tname == '1': PF = V1
    if tname == '2': PF = V2
    if tname == '3': PF = V3
    if tname == '4': PF = V4

    SKIP = 0
    EVTMAX = 5 + SKIP

    DO_PLOT_IMAGE = True
    DO_PLOT_PIXEL_STATUS = False  #True if PF in (V2,V4) else False
    DO_PLOT_CONNECED_PIXELS = False  #True if PF in (V2,V3,V4) else False
    DO_PLOT_LOCAL_MAXIMUMS = False  #True if PF == V3 else False
    DO_PLOT_LOCAL_MINIMUMS = False  #True if PF == V3 else False

    shape = (1000, 1000)

    # Pixel image indexes
    #arr3d = np.array((1,shape[0],shape[1]))

    INDS = np.indices((1, shape[0], shape[1]), dtype=np.int64)
    imRow, imCol = INDS[1, :], INDS[2, :]
    #iX  = np.array(det.indexes_x(evt), dtype=np.int64) #- xoffset
    #iY  = np.array(det.indexes_y(evt), dtype=np.int64) #- yoffset

    fs = (8, 7)  # (11,10)
    ##-----------------------------
    fig5, axim5, axcb5, imsh5 = gg.fig_axim_axcb_imsh(
        figsize=fs) if DO_PLOT_LOCAL_MINIMUMS else (None, None, None, None)
    fig4, axim4, axcb4, imsh4 = gg.fig_axim_axcb_imsh(
        figsize=fs) if DO_PLOT_LOCAL_MAXIMUMS else (None, None, None, None)
    fig3, axim3, axcb3, imsh3 = gg.fig_axim_axcb_imsh(
        figsize=fs) if DO_PLOT_CONNECED_PIXELS else (None, None, None, None)
    fig2, axim2, axcb2, imsh2 = gg.fig_axim_axcb_imsh(
        figsize=fs) if DO_PLOT_PIXEL_STATUS else (None, None, None, None)
    fig1, axim1, axcb1, imsh1 = gg.fig_axim_axcb_imsh(
        figsize=fs) if DO_PLOT_IMAGE else (None, None, None, None)
    ##-----------------------------

    alg = PyAlgos(windows=None, mask=None, pbits=10)  # 0177777)

    if PF == V1:
        alg.set_peak_selection_pars(npix_min=0,
                                    npix_max=1e6,
                                    amax_thr=0,
                                    atot_thr=0,
                                    son_min=6)

    elif PF == V2:
        alg.set_peak_selection_pars(npix_min=0,
                                    npix_max=1e6,
                                    amax_thr=0,
                                    atot_thr=0,
                                    son_min=6)

    elif PF == V3:
        alg.set_peak_selection_pars(npix_min=0,
                                    npix_max=1e6,
                                    amax_thr=0,
                                    atot_thr=0,
                                    son_min=8)

    elif PF == V4:
        alg.set_peak_selection_pars(npix_min=0,
                                    npix_max=1e6,
                                    amax_thr=0,
                                    atot_thr=0,
                                    son_min=6)

    alg.print_attributes()

    for ev in range(EVTMAX):
        ev1 = ev + 1

        if ev < SKIP: continue
        #if ev>=EVTMAX : break

        print 50 * '_', '\nEvent %04d' % ev1

        img, peaks_sim = image_with_random_peaks(shape)

        # --- for debugging
        #np.save('xxx-image', img)
        #np.save('xxx-peaks', np.array(peaks_sim))

        #img = np.load('xxx-image-crash.npy')
        #peaks_sim = np.load('xxx-peaks-crash.npy')
        # ---

        peaks_gen = [(0, r, c, a, a * s, 9 * s * s)
                     for r, c, a, s in peaks_sim]

        t0_sec = time()

        #peaks = alg.peak_finder_v1(img, thr_low=20, thr_high=40, radius=6, dr=2) if PF == V1 else\
        #        alg.peak_finder_v2r1(img, thr=30, r0=7, dr=2)                    if PF == V2 else\
        #        alg.peak_finder_v3r2(img, rank=5, r0=7, dr=2, nsigm=3)           if PF == V3 else\
        #        alg.peak_finder_v4r2(img, thr_low=20, thr_high=40, rank=6, r0=7, dr=2)

        peaks = None                                                             if PF == V1 else\
                None                                                             if PF == V2 else\
                alg.peak_finder_v3r3(img, rank=5, r0=7, dr=2, nsigm=3)           if PF == V3 else\
                alg.peak_finder_v4r3(img, thr_low=20, thr_high=40, rank=6, r0=7, dr=2)

        print '  Time consumed by the peak_finder = %10.6f(sec)' % (time() -
                                                                    t0_sec)

        map2 = reshape_to_2d(alg.maps_of_pixel_status(
        )) if DO_PLOT_PIXEL_STATUS else None  # np.zeros((10,10))
        map3 = reshape_to_2d(alg.maps_of_connected_pixels(
        )) if DO_PLOT_CONNECED_PIXELS else None  # np.zeros((10,10))
        map4 = reshape_to_2d(alg.maps_of_local_maximums(
        )) if DO_PLOT_LOCAL_MAXIMUMS else None  # np.zeros((10,10))
        map5 = reshape_to_2d(alg.maps_of_local_minimums(
        )) if DO_PLOT_LOCAL_MINIMUMS else None  # np.zeros((10,10))

        print 'arrays are extracted'

        #print_arr(map2, 'map_of_pixel_status')
        #print_arr(map3, 'map_of_connected_pixels')
        #maps.shape = shape

        print 'Simulated peaks:'
        for i, (r0, c0, a0, sigma) in enumerate(peaks_sim):
            print '  %04d  row=%6.1f  col=%6.1f  amp=%6.1f  sigma=%6.3f' % (
                i, r0, c0, a0, sigma)
        #plot_image(img)

        print 'Found peaks:'
        print hdr
        reg = 'IMG'
        for pk in peaks:
            seg,row,col,npix,amax,atot,rcent,ccent,rsigma,csigma,\
            rmin,rmax,cmin,cmax,bkgd,rms,son = pk[0:17]
            rec = fmt % (ev, reg, seg, row, col, npix, amax, atot, rcent, ccent, rsigma, csigma,\
                  rmin, rmax, cmin, cmax, bkgd, rms, son) #,\
            #imrow, imcol, xum, yum, rum, phi)
            print rec

        if DO_PLOT_PIXEL_STATUS:
            gg.plot_imgcb(fig2,
                          axim2,
                          axcb2,
                          imsh2,
                          map2,
                          amin=0,
                          amax=30,
                          title='Pixel status, ev: %04d' % ev1)
            gg.move_fig(fig2, x0=0, y0=30)

        if DO_PLOT_CONNECED_PIXELS:
            cmin, cmax = (map3.min(),
                          map3.max()) if map3 is not None else (None, None)
            print 'Connected pixel groups min/max:', cmin, cmax
            gg.plot_imgcb(fig3,
                          axim3,
                          axcb3,
                          imsh3,
                          map3,
                          amin=cmin,
                          amax=cmax,
                          title='Connected pixel groups, ev: %04d' % ev1)
            gg.move_fig(fig3, x0=100, y0=30)

        if DO_PLOT_LOCAL_MAXIMUMS:
            gg.plot_imgcb(fig4,
                          axim4,
                          axcb4,
                          imsh4,
                          map4,
                          amin=0,
                          amax=10,
                          title='Local maximums, ev: %04d' % ev1)
            gg.move_fig(fig4, x0=200, y0=30)

        if DO_PLOT_LOCAL_MINIMUMS:
            gg.plot_imgcb(fig5,
                          axim5,
                          axcb5,
                          imsh5,
                          map5,
                          amin=0,
                          amax=10,
                          title='Local minimums, ev: %04d' % ev1)
            gg.move_fig(fig5, x0=300, y0=30)

        if DO_PLOT_IMAGE:
            #nda = maps_of_conpix_arc
            #nda = maps_of_conpix_equ
            #img = det.image(evt, nda)[xoffset:xoffset+xsize,yoffset:yoffset+ysize]
            #img = det.image(evt, mask_img*nda)[xoffset:xoffset+xsize,yoffset:yoffset+ysize]
            #img = det.image(evt, maps_of_conpix_equ)[xoffset:xoffset+xsize,yoffset:yoffset+ysize]

            ave, rms = img.mean(), img.std()
            amin, amax = ave - 1 * rms, ave + 8 * rms
            axim1.clear()
            if imsh1 is not None: del imsh1
            imsh1 = None
            gg.plot_imgcb(fig1,
                          axim1,
                          axcb1,
                          imsh1,
                          img,
                          amin=amin,
                          amax=amax,
                          title='Image, ev: %04d' % ev1)
            gg.move_fig(fig1, x0=400, y0=30)

            gg.plot_peaks_on_img(peaks_gen,
                                 axim1,
                                 imRow,
                                 imCol,
                                 color='g',
                                 lw=5)  #, pbits=3)
            gg.plot_peaks_on_img(peaks, axim1, imRow, imCol,
                                 color='w')  #, pbits=3)

            fig1.canvas.draw()  # re-draw figure content

            #gg.plotHistogram(nda, amp_range=(-100,100), bins=200, title='Event %d' % i)
            gg.show(mode='do not hold')

    gg.show()
Rum = np.sqrt(Xum*Xum + Yum*Yum)
Phi = np.arctan2(Yum,Xum) * 180 / np.pi

imRow.shape  = imCol.shape  = \
Xum.shape    = Yum.shape    = \
Rum.shape    = Phi.shape    = det.shape()

#------------------------------
fig1, axim1, axcb1, imsh1 = gg.fig_axim_axcb_imsh(figsize=(12,11))
#------------------------------

alg = None
if TEST_BW_COMP :
    print "BACKWARD COMPATABILITY TEST"
    #alg = PyAlgos(windows=None, mask=mask, pbits=0) # for ImgAlgos.PyAlgos
    alg = PyAlgos(mask, pbits=0)
    if   PF == V3 : alg.set_peak_selection_pars(npix_min=2, npix_max=1e6, amax_thr=0, atot_thr=0, son_min=10)
    elif PF == V4 : alg.set_peak_selection_pars(npix_min=2, npix_max=1e6, amax_thr=0, atot_thr=0, son_min=5)

else :
    print "NEW PF TEST"


t0_sec_evloop = time()
nda = None
peaks = None

# loop over events in data set
myrun = next(ds.runs())
for evnum, evt in enumerate(myrun.events()) :
示例#5
0
 def __init__(self):
     """ Initialize instance of imported PyAlgos algorithm.
     """
     self.alg = PyAlgos(mask=None, pbits=0)
     self.setDefaultParams()
示例#6
0
class adaptiveAlgorithm(abstractAlgorithm.abstractAlgorithm):
    def __init__(self):
        """ Initialize instance of imported PyAlgos algorithm.
        """
        self.alg = PyAlgos(mask=None, pbits=0)
        self.setDefaultParams()

    def setParams(self):
        """ Use the algorithm's function, set_peak_selection_pars, 
        to set parameters.
        """
        self.alg.set_peak_selection_pars(npix_min=self.alg1_npix_min,
                                         npix_max=self.alg1_npix_max,
                                         amax_thr=self.alg1_amax_thr,
                                         atot_thr=self.alg1_atot_thr,
                                         son_min=self.alg1_son_min)

    def initParams(self, **kwargs):
        """ Save the values of the parameters from kwargs.

        Arguments:
        **kwargs -- dictionary of parameters, either default or user inputted
        """
        self.alg1_npix_min = kwargs["npix_min"]
        self.alg1_npix_max = kwargs["npix_max"]
        self.alg1_amax_thr = kwargs["amax_thr"]
        self.alg1_atot_thr = kwargs["atot_thr"]
        self.alg1_son_min = kwargs["son_min"]
        self.alg1_rank = kwargs["rank"]
        self.alg1_r0 = kwargs["r0"]
        self.alg1_dr = kwargs["dr"]
        self.alg1_nsigm = kwargs["nsigm"]
        self.setParams()

    def algorithm(self, nda, mask, kw=None):
        """ Uses peak_finder_v3r3 (a.k.a. adaptive peak finder) to 
        find peaks on an image.

        Arguments:
        nda -- detector image
        mask -- detector mask
        kw -- dictionary or None, if None default parameters are used, 
          otherwise kw is used to initialize parameters
        """
        if kw == None:
            self.initParams(**self.default_params)
        else:
            self.initParams(**kw)
        self.peaks = self.alg.peak_finder_v3r3(nda,
                                               rank=self.alg1_rank,
                                               r0=self.alg1_r0,
                                               dr=self.alg1_dr,
                                               nsigm=self.alg1_nsigm,
                                               mask=mask)
        return self.peaks

    def getDefaultParams(self):
        """ Return the default parameters in the form of a string, for Psocake to display
        """
        return json.dumps(self.default_params)

    def setDefaultParams(self):
        #The default parameters for the adaptive peak finding algorithm
        #self.default_params_str = "{\"npix_min\": 2,\"npix_max\":30,\"amax_thr\":300, \"atot_thr\":600,\"son_min\":10, \"rank\":3, \"r0\":3, \"dr\":2, \"nsigm\":5 }"
        self.default_params = {
            "npix_min": 2,
            "npix_max": 30,
            "amax_thr": 300,
            "atot_thr": 600,
            "son_min": 10,
            "rank": 3,
            "r0": 3,
            "dr": 2,
            "nsigm": 5
        }