示例#1
0
    def residue(self, X, so_prop_ints):
        prop_a = [
            core.triplet(self.Co[0], x, self.Cv[0], True, False, False)
            for x in so_prop_ints
        ]
        prop_b = [
            core.triplet(self.Co[1], x, self.Cv[1], True, False, False)
            for x in so_prop_ints
        ]

        return np.array([
            X[0].vector_dot(u[0]) + X[1].vector_dot(u[1])
            for u in zip(prop_a, prop_b)
        ])
示例#2
0
    def residue(self, X, so_prop_ints):
        # return zeros if spin multiplicity of GS and ES differ
        if not self.singlet and (self.mult_gs == 1):
            return np.zeros(len(so_prop_ints))

        prop = [core.triplet(self.Co, x, self.Cv, True, False, False) for x in so_prop_ints]

        return np.sqrt(2.0) * np.array([X.vector_dot(u) for u in prop])
示例#3
0
def _compute_fxc(PQrho, half_Saux, halfp_Saux, x_alpha, rho_thresh=1.e-8):
    """
    Computes the gridless (P|fxc|Q) ALDA tensor.
    """

    naux = PQrho.shape[0]

    # Level it out
    PQrho_lvl = core.triplet(half_Saux, PQrho, half_Saux, False, False, False)

    # Rotate into a diagonal basis
    rho = core.Vector("rho eigenvalues", naux)
    U = core.Matrix("rho eigenvectors", naux, naux)
    PQrho_lvl.diagonalize(U, rho, core.DiagonalizeOrder.Ascending)

    # "Gridless DFT"
    mask = rho.np < rho_thresh  # Values too small cause singularities
    rho.np[mask] = rho_thresh

    dft_size = rho.shape[0]

    inp = {"RHO_A": rho}
    out = {
        "V": core.Vector(dft_size),
        "V_RHO_A": core.Vector(dft_size),
        "V_RHO_A_RHO_A": core.Vector(dft_size)
    }

    func_x = core.LibXCFunctional('XC_LDA_X', True)
    func_x.compute_functional(inp, out, dft_size, 2)
    out["V_RHO_A_RHO_A"].scale(1.0 - x_alpha)

    func_c = core.LibXCFunctional('XC_LDA_C_VWN', True)
    func_c.compute_functional(inp, out, dft_size, 2)

    out["V_RHO_A_RHO_A"].np[mask] = 0

    # Rotate back
    Ul = U.clone()
    Ul.np[:] *= out["V_RHO_A_RHO_A"].np
    tmp = core.doublet(Ul, U, False, True)

    # Undo the leveling
    return core.triplet(halfp_Saux, tmp, halfp_Saux, False, False, False)
示例#4
0
def _compute_fxc(PQrho, half_Saux, halfp_Saux, rho_thresh=1.e-8):
    """
    Computes the gridless (P|fxc|Q) ALDA tensor.
    """

    naux = PQrho.shape[0]

    # Level it out
    PQrho_lvl = core.triplet(half_Saux, PQrho, half_Saux, False, False, False)

    # Rotate into a diagonal basis
    rho = core.Vector("rho eigenvalues", naux)
    U = core.Matrix("rho eigenvectors", naux, naux)
    PQrho_lvl.diagonalize(U, rho, core.DiagonalizeOrder.Ascending)

    # "Gridless DFT"
    mask = rho.np < rho_thresh  # Values too small cause singularities
    rho.np[mask] = rho_thresh

    dft_size = rho.shape[0]

    inp = {"RHO_A": rho}
    out = {"V": core.Vector(dft_size),
           "V_RHO_A": core.Vector(dft_size),
           "V_RHO_A_RHO_A": core.Vector(dft_size)}

    func_x = core.LibXCFunctional('XC_LDA_X', True)
    func_x.compute_functional(inp, out, dft_size, 2)

    func_c = core.LibXCFunctional('XC_LDA_C_VWN', True)
    func_c.compute_functional(inp, out, dft_size, 2)

    out["V_RHO_A_RHO_A"].np[mask] = 0

    # Rotate back
    Ul = U.clone()
    Ul.np[:] *= out["V_RHO_A_RHO_A"].np
    tmp = core.doublet(Ul, U, False, True)

    # Undo the leveling
    return core.triplet(halfp_Saux, tmp, halfp_Saux, False, False, False)
示例#5
0
def _core_triplet(A, B, C, transA, transB, transC):
    """Multiply three matrices together.

    .. deprecated:: 1.4
       Use :py:func:`psi4.core.triplet` instead.

    """
    warnings.warn(
        "Using `psi4.core.Matrix.triplet` instead of `psi4.core.triplet` is deprecated, and in 1.4 it will stop working\n",
        category=FutureWarning,
        stacklevel=2)
    return core.triplet(A, B, C, transA, transB, transC)
示例#6
0
def orthogonalize(C, S):
    nbf, nocc = C.shape

    eigenvectors = core.Matrix(nocc, nocc)
    eigvals = core.Vector(nocc)
    sqrt_eigvals = core.Vector(nocc)

    CTSC = core.triplet(C, S, C, True, False, False)
    CTSC.diagonalize(eigenvectors, eigvals, core.DiagonalizeOrder.Ascending)

    orthonormal = core.doublet(C, eigenvectors, False, False)

    sqrt_eigvals.np[:] = np.sqrt(eigvals.np)
    orthonormal.np[:, :] /= sqrt_eigvals.np[np.newaxis, :]

    return orthonormal
示例#7
0
def _ROHF_orbital_gradient(self, save_fock: bool,
                           max_diis_vectors: int) -> float:
    # Only the inact-act, inact-vir, and act-vir rotations are non-redundant
    dim_zero = core.Dimension(self.nirrep(), "Zero Dim")
    noccpi = self.doccpi() + self.soccpi()
    row_slice = core.Slice(dim_zero, noccpi)
    col_slice = core.Slice(self.doccpi(), self.nmopi())
    MOgradient = self.moFeff().get_block(row_slice, col_slice)

    # Zero the active-active block
    for h in range(MOgradient.nirrep()):
        socc = self.soccpi()[h]
        docc = self.doccpi()[h]

        MOgradient.nph[h][docc:docc + socc, 0:socc] = 0

    # Grab inact-act and act-vir orbs
    # Ct is (nmo x nmo), not the (nso x nmo) you would expect
    row_slice = core.Slice(dim_zero, self.nmopi())
    col_slice = core.Slice(dim_zero, noccpi)
    Cia = self.Ct().get_block(row_slice, col_slice)
    col_slice = core.Slice(self.doccpi(), self.nmopi())
    Cav = self.Ct().get_block(row_slice, col_slice)

    # Back transform MOgradient
    gradient = core.triplet(Cia, MOgradient, Cav, False, False, True)

    if save_fock:
        if not self.initialized_diis_manager_:
            self.diis_manager_ = core.DIISManager(max_diis_vectors,
                                                  "HF DIIS vector",
                                                  RemovalPolicy.LargestError,
                                                  StoragePolicy.OnDisk)
            self.diis_manager_.set_error_vector_size(gradient)
            self.diis_manager_.set_vector_size(self.soFeff())
            self.initialized_diis_manager_ = True

        self.diis_manager_.add_entry(gradient, self.soFeff())

    if self.options().get_bool("DIIS_RMS_ERROR"):
        return gradient.rms()
    else:
        return gradient.absmax()
示例#8
0
    def __call__(self, mol1_wfn, mol2_wfn):
        nbf = self.p.dimer_basis.nbf()
        nocc = mol1_wfn.nalpha() + mol2_wfn.nalpha()

        # Take the occupied orbitals from the two HF monomer wavefunctions
        # and pack them (block diagonal) into the dimer basis set.
        m1_OCC = mol1_wfn.Ca_subset('SO', 'OCC')
        m2_OCC = mol2_wfn.Ca_subset('SO', 'OCC')

        C = core.Matrix(nbf, nocc)
        C.np[:mol1_wfn.nso(), :mol1_wfn.nalpha()] = m1_OCC.np[:, :]
        C.np[-mol2_wfn.nso():, -mol2_wfn.nalpha():] = m2_OCC.np[:, :]

        C = orthogonalize(C, self.p.dimer_S)

        # At this point, it should be the case that
        # C.T * S * C == I
        np.testing.assert_array_almost_equal(
            core.triplet(C, self.p.dimer_S, C, True, False, False),
            np.eye(nocc))

        self.jk.C_clear()
        self.jk.C_left_add(C)
        self.jk.compute()

        J = self.jk.J()[0]
        K = self.jk.K()[0]
        D = self.jk.D()[0]

        # 2T + 2V + 2J - K

        FH = J.clone()
        FH.zero()
        FH.axpy(2, self.p.dimer_T)
        FH.axpy(2, self.p.dimer_V)
        FH.axpy(2, J)
        FH.axpy(-1, K)

        energy = FH.vector_dot(D) + self.p.dimer_basis.molecule().nuclear_repulsion_energy()
        hl = energy - (mol1_wfn.energy() + mol2_wfn.energy())
        return hl
示例#9
0
def build_sapt_jk_cache(wfn_A, wfn_B, jk, do_print=True):
    """
    Constructs the DCBS cache data required to compute ELST/EXCH/IND
    """

    core.print_out("\n  ==> Preparing SAPT Data Cache <== \n\n")
    jk.print_header()

    cache = {}
    cache["wfn_A"] = wfn_A
    cache["wfn_B"] = wfn_B

    # First grab the orbitals
    cache["Cocc_A"] = wfn_A.Ca_subset("AO", "OCC")
    cache["Cvir_A"] = wfn_A.Ca_subset("AO", "VIR")

    cache["Cocc_B"] = wfn_B.Ca_subset("AO", "OCC")
    cache["Cvir_B"] = wfn_B.Ca_subset("AO", "VIR")

    cache["eps_occ_A"] = wfn_A.epsilon_a_subset("AO", "OCC")
    cache["eps_vir_A"] = wfn_A.epsilon_a_subset("AO", "VIR")

    cache["eps_occ_B"] = wfn_B.epsilon_a_subset("AO", "OCC")
    cache["eps_vir_B"] = wfn_B.epsilon_a_subset("AO", "VIR")

    # Build the densities as HF takes an extra "step"
    cache["D_A"] = core.doublet(cache["Cocc_A"], cache["Cocc_A"], False, True)
    cache["D_B"] = core.doublet(cache["Cocc_B"], cache["Cocc_B"], False, True)

    cache["P_A"] = core.doublet(cache["Cvir_A"], cache["Cvir_A"], False, True)
    cache["P_B"] = core.doublet(cache["Cvir_B"], cache["Cvir_B"], False, True)

    # Potential ints
    mints = core.MintsHelper(wfn_A.basisset())
    cache["V_A"] = mints.ao_potential()
    # cache["V_A"].axpy(1.0, wfn_A.Va())

    mints = core.MintsHelper(wfn_B.basisset())
    cache["V_B"] = mints.ao_potential()
    # cache["V_B"].axpy(1.0, wfn_B.Va())

    # Anything else we might need
    cache["S"] = wfn_A.S().clone()

    # J and K matrices
    jk.C_clear()

    # Normal J/K for Monomer A
    jk.C_left_add(wfn_A.Ca_subset("SO", "OCC"))
    jk.C_right_add(wfn_A.Ca_subset("SO", "OCC"))

    # Normal J/K for Monomer B
    jk.C_left_add(wfn_B.Ca_subset("SO", "OCC"))
    jk.C_right_add(wfn_B.Ca_subset("SO", "OCC"))

    # K_O J/K
    C_O_A = core.triplet(cache["D_B"], cache["S"], cache["Cocc_A"], False,
                         False, False)
    jk.C_left_add(C_O_A)
    jk.C_right_add(cache["Cocc_A"])

    jk.compute()

    # Clone them as the JK object will overwrite.
    cache["J_A"] = jk.J()[0].clone()
    cache["K_A"] = jk.K()[0].clone()

    cache["J_B"] = jk.J()[1].clone()
    cache["K_B"] = jk.K()[1].clone()

    cache["J_O"] = jk.J()[2].clone()
    cache["K_O"] = jk.K()[2].clone()
    cache["K_O"].transpose_this()

    monA_nr = wfn_A.molecule().nuclear_repulsion_energy()
    monB_nr = wfn_B.molecule().nuclear_repulsion_energy()
    dimer_nr = wfn_A.molecule().extract_subsets([1, 2
                                                 ]).nuclear_repulsion_energy()

    cache["nuclear_repulsion_energy"] = dimer_nr - monA_nr - monB_nr

    return cache
示例#10
0
def induction(cache,
              jk,
              do_print=True,
              maxiter=12,
              conv=1.e-8,
              do_response=True,
              Sinf=False,
              sapt_jk_B=None):
    """
    Compute Ind20 and Exch-Ind20 quantities from a SAPT cache and JK object.
    """

    if do_print:
        core.print_out("\n  ==> E20 Induction <== \n\n")

    # Build Induction and Exchange-Induction potentials
    S = cache["S"]

    D_A = cache["D_A"]
    V_A = cache["V_A"]
    J_A = cache["J_A"]
    K_A = cache["K_A"]

    D_B = cache["D_B"]
    V_B = cache["V_B"]
    J_B = cache["J_B"]
    K_B = cache["K_B"]

    K_O = cache["K_O"]
    J_O = cache["J_O"]

    jk.C_clear()

    jk.C_left_add(core.Matrix.chain_dot(D_B, S, cache["Cocc_A"]))
    jk.C_right_add(cache["Cocc_A"])

    jk.C_left_add(core.Matrix.chain_dot(D_B, S, D_A, S, cache["Cocc_B"]))
    jk.C_right_add(cache["Cocc_B"])

    jk.C_left_add(core.Matrix.chain_dot(D_A, S, D_B, S, cache["Cocc_A"]))
    jk.C_right_add(cache["Cocc_A"])

    jk.compute()

    J_Ot, J_P_B, J_P_A = jk.J()
    K_Ot, K_P_B, K_P_A = jk.K()

    # Exch-Ind Potential A
    EX_A = K_B.clone()
    EX_A.scale(-1.0)
    EX_A.axpy(-2.0, J_O)
    EX_A.axpy(1.0, K_O)
    EX_A.axpy(2.0, J_P_B)

    EX_A.axpy(-1.0, core.Matrix.chain_dot(S, D_B, V_A))
    EX_A.axpy(-2.0, core.Matrix.chain_dot(S, D_B, J_A))
    EX_A.axpy(1.0, core.Matrix.chain_dot(S, D_B, K_A))
    EX_A.axpy(1.0, core.Matrix.chain_dot(S, D_B, S, D_A, V_B))
    EX_A.axpy(2.0, core.Matrix.chain_dot(S, D_B, S, D_A, J_B))
    EX_A.axpy(1.0, core.Matrix.chain_dot(S, D_B, V_A, D_B, S))
    EX_A.axpy(2.0, core.Matrix.chain_dot(S, D_B, J_A, D_B, S))
    EX_A.axpy(-1.0,
              core.Matrix.chain_dot(S, D_B, K_O, trans=[False, False, True]))

    EX_A.axpy(-1.0, core.Matrix.chain_dot(V_B, D_B, S))
    EX_A.axpy(-2.0, core.Matrix.chain_dot(J_B, D_B, S))
    EX_A.axpy(1.0, core.Matrix.chain_dot(K_B, D_B, S))
    EX_A.axpy(1.0, core.Matrix.chain_dot(V_B, D_A, S, D_B, S))
    EX_A.axpy(2.0, core.Matrix.chain_dot(J_B, D_A, S, D_B, S))
    EX_A.axpy(-1.0, core.Matrix.chain_dot(K_O, D_B, S))

    EX_A = core.Matrix.chain_dot(cache["Cocc_A"],
                                 EX_A,
                                 cache["Cvir_A"],
                                 trans=[True, False, False])

    # Exch-Ind Potential B
    EX_B = K_A.clone()
    EX_B.scale(-1.0)
    EX_B.axpy(-2.0, J_O)
    EX_B.axpy(1.0, K_O.transpose())
    EX_B.axpy(2.0, J_P_A)

    EX_B.axpy(-1.0, core.Matrix.chain_dot(S, D_A, V_B))
    EX_B.axpy(-2.0, core.Matrix.chain_dot(S, D_A, J_B))
    EX_B.axpy(1.0, core.Matrix.chain_dot(S, D_A, K_B))
    EX_B.axpy(1.0, core.Matrix.chain_dot(S, D_A, S, D_B, V_A))
    EX_B.axpy(2.0, core.Matrix.chain_dot(S, D_A, S, D_B, J_A))
    EX_B.axpy(1.0, core.Matrix.chain_dot(S, D_A, V_B, D_A, S))
    EX_B.axpy(2.0, core.Matrix.chain_dot(S, D_A, J_B, D_A, S))
    EX_B.axpy(-1.0, core.Matrix.chain_dot(S, D_A, K_O))

    EX_B.axpy(-1.0, core.Matrix.chain_dot(V_A, D_A, S))
    EX_B.axpy(-2.0, core.Matrix.chain_dot(J_A, D_A, S))
    EX_B.axpy(1.0, core.Matrix.chain_dot(K_A, D_A, S))
    EX_B.axpy(1.0, core.Matrix.chain_dot(V_A, D_B, S, D_A, S))
    EX_B.axpy(2.0, core.Matrix.chain_dot(J_A, D_B, S, D_A, S))
    EX_B.axpy(-1.0,
              core.Matrix.chain_dot(K_O, D_A, S, trans=[True, False, False]))

    EX_B = core.Matrix.chain_dot(cache["Cocc_B"],
                                 EX_B,
                                 cache["Cvir_B"],
                                 trans=[True, False, False])

    # Build electrostatic potenital
    w_A = cache["V_A"].clone()
    w_A.axpy(2.0, cache["J_A"])

    w_B = cache["V_B"].clone()
    w_B.axpy(2.0, cache["J_B"])

    w_B_MOA = core.triplet(cache["Cocc_A"], w_B, cache["Cvir_A"], True, False,
                           False)
    w_A_MOB = core.triplet(cache["Cocc_B"], w_A, cache["Cvir_B"], True, False,
                           False)

    # Do uncoupled
    core.print_out("   => Uncoupled Induction <= \n\n")
    unc_x_B_MOA = w_B_MOA.clone()
    unc_x_B_MOA.np[:] /= (cache["eps_occ_A"].np.reshape(-1, 1) -
                          cache["eps_vir_A"].np)
    unc_x_A_MOB = w_A_MOB.clone()
    unc_x_A_MOB.np[:] /= (cache["eps_occ_B"].np.reshape(-1, 1) -
                          cache["eps_vir_B"].np)

    unc_ind_ab = 2.0 * unc_x_B_MOA.vector_dot(w_B_MOA)
    unc_ind_ba = 2.0 * unc_x_A_MOB.vector_dot(w_A_MOB)
    unc_indexch_ab = 2.0 * unc_x_B_MOA.vector_dot(EX_A)
    unc_indexch_ba = 2.0 * unc_x_A_MOB.vector_dot(EX_B)

    ret = {}
    ret["Ind20,u (A<-B)"] = unc_ind_ab
    ret["Ind20,u (A->B)"] = unc_ind_ba
    ret["Ind20,u"] = unc_ind_ab + unc_ind_ba
    ret["Exch-Ind20,u (A<-B)"] = unc_indexch_ab
    ret["Exch-Ind20,u (A->B)"] = unc_indexch_ba
    ret["Exch-Ind20,u"] = unc_indexch_ba + unc_indexch_ab

    plist = [
        "Ind20,u (A<-B)", "Ind20,u (A->B)", "Ind20,u", "Exch-Ind20,u (A<-B)",
        "Exch-Ind20,u (A->B)", "Exch-Ind20,u"
    ]

    if do_print:
        for name in plist:
            # core.set_variable(name, ret[name])
            core.print_out(print_sapt_var(name, ret[name], short=True))
            core.print_out("\n")

    # Exch-Ind without S^2
    if Sinf:
        nocc_A = cache["Cocc_A"].shape[1]
        nocc_B = cache["Cocc_B"].shape[1]
        SAB = core.triplet(cache["Cocc_A"], cache["S"], cache["Cocc_B"], True,
                           False, False)
        num_occ = nocc_A + nocc_B

        Sab = core.Matrix(num_occ, num_occ)
        Sab.np[:nocc_A, nocc_A:] = SAB.np
        Sab.np[nocc_A:, :nocc_A] = SAB.np.T
        Sab.np[np.diag_indices_from(Sab.np)] += 1
        Sab.power(-1.0, 1.e-14)

        Tmo_AA = core.Matrix.from_array(Sab.np[:nocc_A, :nocc_A])
        Tmo_BB = core.Matrix.from_array(Sab.np[nocc_A:, nocc_A:])
        Tmo_AB = core.Matrix.from_array(Sab.np[:nocc_A, nocc_A:])

        T_A = core.triplet(cache["Cocc_A"], Tmo_AA, cache["Cocc_A"], False,
                           False, True)
        T_B = core.triplet(cache["Cocc_B"], Tmo_BB, cache["Cocc_B"], False,
                           False, True)
        T_AB = core.triplet(cache["Cocc_A"], Tmo_AB, cache["Cocc_B"], False,
                            False, True)

        sT_A = core.Matrix.chain_dot(cache["Cvir_A"],
                                     unc_x_B_MOA,
                                     Tmo_AA,
                                     cache["Cocc_A"],
                                     trans=[False, True, False, True])
        sT_B = core.Matrix.chain_dot(cache["Cvir_B"],
                                     unc_x_A_MOB,
                                     Tmo_BB,
                                     cache["Cocc_B"],
                                     trans=[False, True, False, True])
        sT_AB = core.Matrix.chain_dot(cache["Cvir_A"],
                                      unc_x_B_MOA,
                                      Tmo_AB,
                                      cache["Cocc_B"],
                                      trans=[False, True, False, True])
        sT_BA = core.Matrix.chain_dot(cache["Cvir_B"],
                                      unc_x_A_MOB,
                                      Tmo_AB,
                                      cache["Cocc_A"],
                                      trans=[False, True, True, True])

        jk.C_clear()

        jk.C_left_add(core.Matrix.chain_dot(cache["Cocc_A"], Tmo_AA))
        jk.C_right_add(cache["Cocc_A"])

        jk.C_left_add(core.Matrix.chain_dot(cache["Cocc_B"], Tmo_BB))
        jk.C_right_add(cache["Cocc_B"])

        jk.C_left_add(core.Matrix.chain_dot(cache["Cocc_A"], Tmo_AB))
        jk.C_right_add(cache["Cocc_B"])

        jk.compute()

        J_AA_inf, J_BB_inf, J_AB_inf = jk.J()
        K_AA_inf, K_BB_inf, K_AB_inf = jk.K()

        # A <- B
        EX_AA_inf = V_B.clone()
        EX_AA_inf.axpy(
            -1.00,
            core.Matrix.chain_dot(S, T_AB, V_B, trans=[False, True, False]))
        EX_AA_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_B, V_B))
        EX_AA_inf.axpy(2.00, J_AB_inf)
        EX_AA_inf.axpy(
            -2.00,
            core.Matrix.chain_dot(S,
                                  T_AB,
                                  J_AB_inf,
                                  trans=[False, True, False]))
        EX_AA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_B, J_AB_inf))
        EX_AA_inf.axpy(2.00, J_BB_inf)
        EX_AA_inf.axpy(
            -2.00,
            core.Matrix.chain_dot(S,
                                  T_AB,
                                  J_BB_inf,
                                  trans=[False, True, False]))
        EX_AA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_B, J_BB_inf))
        EX_AA_inf.axpy(-1.00, K_AB_inf.transpose())
        EX_AA_inf.axpy(
            1.00,
            core.Matrix.chain_dot(S, T_AB, K_AB_inf, trans=[False, True,
                                                            True]))
        EX_AA_inf.axpy(
            1.00,
            core.Matrix.chain_dot(S, T_B, K_AB_inf, trans=[False, False,
                                                           True]))
        EX_AA_inf.axpy(-1.00, K_BB_inf)
        EX_AA_inf.axpy(
            1.00,
            core.Matrix.chain_dot(S,
                                  T_AB,
                                  K_BB_inf,
                                  trans=[False, True, False]))
        EX_AA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_B, K_BB_inf))

        EX_AB_inf = V_A.clone()
        EX_AB_inf.axpy(
            -1.00,
            core.Matrix.chain_dot(S, T_AB, V_A, trans=[False, True, False]))
        EX_AB_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_B, V_A))
        EX_AB_inf.axpy(2.00, J_AA_inf)
        EX_AB_inf.axpy(
            -2.00,
            core.Matrix.chain_dot(S,
                                  T_AB,
                                  J_AA_inf,
                                  trans=[False, True, False]))
        EX_AB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_B, J_AA_inf))
        EX_AB_inf.axpy(2.00, J_AB_inf)
        EX_AB_inf.axpy(
            -2.00,
            core.Matrix.chain_dot(S,
                                  T_AB,
                                  J_AB_inf,
                                  trans=[False, True, False]))
        EX_AB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_B, J_AB_inf))
        EX_AB_inf.axpy(-1.00, K_AA_inf)
        EX_AB_inf.axpy(
            1.00,
            core.Matrix.chain_dot(S,
                                  T_AB,
                                  K_AA_inf,
                                  trans=[False, True, False]))
        EX_AB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_B, K_AA_inf))
        EX_AB_inf.axpy(-1.00, K_AB_inf)
        EX_AB_inf.axpy(
            1.00,
            core.Matrix.chain_dot(S,
                                  T_AB,
                                  K_AB_inf,
                                  trans=[False, True, False]))
        EX_AB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_B, K_AB_inf))

        # B <- A
        EX_BB_inf = V_A.clone()
        EX_BB_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_AB, V_A))
        EX_BB_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_A, V_A))
        EX_BB_inf.axpy(2.00, J_AB_inf)
        EX_BB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_AB_inf))
        EX_BB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_A, J_AB_inf))
        EX_BB_inf.axpy(2.00, J_AA_inf)
        EX_BB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_AA_inf))
        EX_BB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_A, J_AA_inf))
        EX_BB_inf.axpy(-1.00, K_AB_inf)
        EX_BB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_AB_inf))
        EX_BB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_A, K_AB_inf))
        EX_BB_inf.axpy(-1.00, K_AA_inf)
        EX_BB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_AA_inf))
        EX_BB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_A, K_AA_inf))

        EX_BA_inf = V_B.clone()
        EX_BA_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_AB, V_B))
        EX_BA_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_A, V_B))
        EX_BA_inf.axpy(2.00, J_BB_inf)
        EX_BA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_BB_inf))
        EX_BA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_A, J_BB_inf))
        EX_BA_inf.axpy(2.00, J_AB_inf)
        EX_BA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_AB_inf))
        EX_BA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_A, J_AB_inf))
        EX_BA_inf.axpy(-1.00, K_BB_inf)
        EX_BA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_BB_inf))
        EX_BA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_A, K_BB_inf))
        EX_BA_inf.axpy(-1.00, K_AB_inf.transpose())
        EX_BA_inf.axpy(
            1.00,
            core.Matrix.chain_dot(S,
                                  T_AB,
                                  K_AB_inf,
                                  trans=[False, False, True]))
        EX_BA_inf.axpy(
            1.00,
            core.Matrix.chain_dot(S, T_A, K_AB_inf, trans=[False, False,
                                                           True]))

        unc_ind_ab_total = 2.0 * (sT_A.vector_dot(EX_AA_inf) +
                                  sT_AB.vector_dot(EX_AB_inf))
        unc_ind_ba_total = 2.0 * (sT_B.vector_dot(EX_BB_inf) +
                                  sT_BA.vector_dot(EX_BA_inf))
        unc_indexch_ab_inf = unc_ind_ab_total - unc_ind_ab
        unc_indexch_ba_inf = unc_ind_ba_total - unc_ind_ba

        ret["Exch-Ind20,u (A<-B) (S^inf)"] = unc_indexch_ab_inf
        ret["Exch-Ind20,u (A->B) (S^inf)"] = unc_indexch_ba_inf
        ret["Exch-Ind20,u (S^inf)"] = unc_indexch_ba_inf + unc_indexch_ab_inf

        if do_print:
            for name in plist[3:]:
                name = name + ' (S^inf)'

                core.print_out(print_sapt_var(name, ret[name], short=True))
                core.print_out("\n")

    # Do coupled
    if do_response:
        core.print_out("\n   => Coupled Induction <= \n\n")

        x_B_MOA, x_A_MOB = _sapt_cpscf_solve(cache,
                                             jk,
                                             w_B_MOA,
                                             w_A_MOB,
                                             20,
                                             1.e-6,
                                             sapt_jk_B=sapt_jk_B)

        ind_ab = 2.0 * x_B_MOA.vector_dot(w_B_MOA)
        ind_ba = 2.0 * x_A_MOB.vector_dot(w_A_MOB)
        indexch_ab = 2.0 * x_B_MOA.vector_dot(EX_A)
        indexch_ba = 2.0 * x_A_MOB.vector_dot(EX_B)

        ret["Ind20,r (A<-B)"] = ind_ab
        ret["Ind20,r (A->B)"] = ind_ba
        ret["Ind20,r"] = ind_ab + ind_ba
        ret["Exch-Ind20,r (A<-B)"] = indexch_ab
        ret["Exch-Ind20,r (A->B)"] = indexch_ba
        ret["Exch-Ind20,r"] = indexch_ba + indexch_ab

        if do_print:
            core.print_out("\n")
            for name in plist:
                name = name.replace(",u", ",r")

                # core.set_variable(name, ret[name])
                core.print_out(print_sapt_var(name, ret[name], short=True))
                core.print_out("\n")

        # Exch-Ind without S^2
        if Sinf:
            cT_A = core.Matrix.chain_dot(cache["Cvir_A"],
                                         x_B_MOA,
                                         Tmo_AA,
                                         cache["Cocc_A"],
                                         trans=[False, True, False, True])
            cT_B = core.Matrix.chain_dot(cache["Cvir_B"],
                                         x_A_MOB,
                                         Tmo_BB,
                                         cache["Cocc_B"],
                                         trans=[False, True, False, True])
            cT_AB = core.Matrix.chain_dot(cache["Cvir_A"],
                                          x_B_MOA,
                                          Tmo_AB,
                                          cache["Cocc_B"],
                                          trans=[False, True, False, True])
            cT_BA = core.Matrix.chain_dot(cache["Cvir_B"],
                                          x_A_MOB,
                                          Tmo_AB,
                                          cache["Cocc_A"],
                                          trans=[False, True, True, True])

            ind_ab_total = 2.0 * (cT_A.vector_dot(EX_AA_inf) +
                                  cT_AB.vector_dot(EX_AB_inf))
            ind_ba_total = 2.0 * (cT_B.vector_dot(EX_BB_inf) +
                                  cT_BA.vector_dot(EX_BA_inf))
            indexch_ab_inf = ind_ab_total - ind_ab
            indexch_ba_inf = ind_ba_total - ind_ba

            ret["Exch-Ind20,r (A<-B) (S^inf)"] = indexch_ab_inf
            ret["Exch-Ind20,r (A->B) (S^inf)"] = indexch_ba_inf
            ret["Exch-Ind20,r (S^inf)"] = indexch_ba_inf + indexch_ab_inf

            if do_print:
                for name in plist[3:]:
                    name = name.replace(",u", ",r") + ' (S^inf)'

                    core.print_out(print_sapt_var(name, ret[name], short=True))
                    core.print_out("\n")

    return ret
示例#11
0
def exchange(cache, jk, do_print=True):
    """
    Computes the E10 exchange (S^2 and S^inf) from a build_sapt_jk_cache datacache.
    """

    if do_print:
        core.print_out("\n  ==> E10 Exchange <== \n\n")

    # Build potenitals
    h_A = cache["V_A"].clone()
    h_A.axpy(2.0, cache["J_A"])
    h_A.axpy(-1.0, cache["K_A"])

    h_B = cache["V_B"].clone()
    h_B.axpy(2.0, cache["J_B"])
    h_B.axpy(-1.0, cache["K_B"])

    w_A = cache["V_A"].clone()
    w_A.axpy(2.0, cache["J_A"])

    w_B = cache["V_B"].clone()
    w_B.axpy(2.0, cache["J_B"])

    # Build inverse exchange metric
    nocc_A = cache["Cocc_A"].shape[1]
    nocc_B = cache["Cocc_B"].shape[1]
    SAB = core.triplet(cache["Cocc_A"], cache["S"], cache["Cocc_B"], True,
                       False, False)
    num_occ = nocc_A + nocc_B

    Sab = core.Matrix(num_occ, num_occ)
    Sab.np[:nocc_A, nocc_A:] = SAB.np
    Sab.np[nocc_A:, :nocc_A] = SAB.np.T
    Sab.np[np.diag_indices_from(Sab.np)] += 1
    Sab.power(-1.0, 1.e-14)
    Sab.np[np.diag_indices_from(Sab.np)] -= 1.0

    Tmo_AA = core.Matrix.from_array(Sab.np[:nocc_A, :nocc_A])
    Tmo_BB = core.Matrix.from_array(Sab.np[nocc_A:, nocc_A:])
    Tmo_AB = core.Matrix.from_array(Sab.np[:nocc_A, nocc_A:])

    T_A = np.dot(cache["Cocc_A"], Tmo_AA).dot(cache["Cocc_A"].np.T)
    T_B = np.dot(cache["Cocc_B"], Tmo_BB).dot(cache["Cocc_B"].np.T)
    T_AB = np.dot(cache["Cocc_A"], Tmo_AB).dot(cache["Cocc_B"].np.T)

    S = cache["S"]

    D_A = cache["D_A"]
    P_A = cache["P_A"]

    D_B = cache["D_B"]
    P_B = cache["P_B"]

    # Compute the J and K matrices
    jk.C_clear()

    jk.C_left_add(cache["Cocc_A"])
    jk.C_right_add(core.doublet(cache["Cocc_A"], Tmo_AA, False, False))

    jk.C_left_add(cache["Cocc_B"])
    jk.C_right_add(core.doublet(cache["Cocc_A"], Tmo_AB, False, False))

    jk.C_left_add(cache["Cocc_A"])
    jk.C_right_add(core.Matrix.chain_dot(P_B, S, cache["Cocc_A"]))

    jk.compute()

    JT_A, JT_AB, Jij = jk.J()
    KT_A, KT_AB, Kij = jk.K()

    # Start S^2
    Exch_s2 = 0.0

    tmp = core.Matrix.chain_dot(D_A, S, D_B, S, P_A)
    Exch_s2 -= 2.0 * w_B.vector_dot(tmp)

    tmp = core.Matrix.chain_dot(D_B, S, D_A, S, P_B)
    Exch_s2 -= 2.0 * w_A.vector_dot(tmp)

    tmp = core.Matrix.chain_dot(P_A, S, D_B)
    Exch_s2 -= 2.0 * Kij.vector_dot(tmp)

    if do_print:
        core.print_out(print_sapt_var("Exch10(S^2) ", Exch_s2, short=True))
        core.print_out("\n")

    # Start Sinf
    Exch10 = 0.0
    Exch10 -= 2.0 * np.vdot(cache["D_A"], cache["K_B"])
    Exch10 += 2.0 * np.vdot(T_A, h_B.np)
    Exch10 += 2.0 * np.vdot(T_B, h_A.np)
    Exch10 += 2.0 * np.vdot(T_AB, h_A.np + h_B.np)
    Exch10 += 4.0 * np.vdot(T_B, JT_AB.np - 0.5 * KT_AB.np)
    Exch10 += 4.0 * np.vdot(T_A, JT_AB.np - 0.5 * KT_AB.np)
    Exch10 += 4.0 * np.vdot(T_B, JT_A.np - 0.5 * KT_A.np)
    Exch10 += 4.0 * np.vdot(T_AB, JT_AB.np - 0.5 * KT_AB.np.T)

    if do_print:
        core.set_variable("Exch10", Exch10)
        core.print_out(print_sapt_var("Exch10", Exch10, short=True))
        core.print_out("\n")

    return {"Exch10(S^2)": Exch_s2, "Exch10": Exch10}
示例#12
0
def _core_triplet(A, B, C, transA, transB, transC):
    warnings.warn(
        "Using `psi4.core.Matrix.triplet` instead of `psi4.core.triplet` is deprecated, and in 1.4 it will stop working\n",
        category=FutureWarning,
        stacklevel=2)
    return core.triplet(A, B, C, transA, transB, transC)
示例#13
0
 def _so_to_mo(self, X):
     """Transform (C_occ)^T X C_vir"""
     return [core.triplet(self.Co[i], X[i], self.Cv[i], True, False, False) for i in (0, 1)]
示例#14
0
def cpscf_linear_response(wfn, *args, **kwargs):
    """
    Compute the static properties from a reference wavefunction. The currently implemented properties are
      - dipole polarizability
      - quadrupole polarizability

    Parameters
    ----------
    wfn : psi4 wavefunction
        The reference wavefunction.
    args : list
        The list of arguments. For each argument, such as ``dipole polarizability``, will return the corresponding
        response. The user may also choose to pass a list or tuple of custom vectors.
    kwargs : dict
        Options that control how the response is computed. The following options are supported (with default values):
          - ``conv_tol``: 1e-5
          - ``max_iter``: 10
          - ``print_lvl``: 2

    Returns
    -------
    responses : list
        The list of responses.
    """
    mints = core.MintsHelper(wfn.basisset())

    # list of dictionaries to control response calculations, count how many user-supplied vectors we have
    complete_dict = []
    n_user = 0

    for arg in args:

        # for each string keyword, append the appropriate dictionary (vide supra) to our list
        if isinstance(arg, str):
            ret = property_dicts.get(arg)
            if ret:
                complete_dict.append(ret)
            else:
                raise ValidationError('Do not understand {}. Abort.'.format(arg))

        # the user passed a list of vectors. absorb them into a dictionary
        elif isinstance(arg, tuple) or isinstance(arg, list):
            complete_dict.append({
                'name': 'User Vectors',
                'length': len(arg),
                'vectors': arg,
                'vector names': ['User Vector {}_{}'.format(n_user, i) for i in range(len(arg))]
            })
            n_user += len(arg)

        # single vector passed. stored in a dictionary as a list of length 1 (can be handled as the case above that way)
        # note: the length is set to '0' to designate that it was not really passed as a list
        else:
            complete_dict.append({
                'name': 'User Vector',
                'length': 0,
                'vectors': [arg],
                'vector names': ['User Vector {}'.format(n_user)]
            })
            n_user += 1

    # vectors will be passed to the cphf solver, vector_names stores the corresponding names
    vectors = []
    vector_names = []

    # construct the list of vectors. for the keywords, fetch the appropriate tensors from MintsHelper
    for prop in complete_dict:
        if 'User' in prop['name']:
            for name, vec in zip(prop['vector names'], prop['vectors']):
                vectors.append(vec)
                vector_names.append(name)

        else:
            tmp_vectors = prop['mints_function'](mints)
            for tmp in tmp_vectors:
                tmp.scale(-2.0)  # RHF only
                vectors.append(tmp)
                vector_names.append(tmp.name)

    # do we have any vectors to work with?
    if len(vectors) == 0:
        raise ValidationError('I have no vectors to work with. Aborting.')

    # print information on module, vectors that will be used
    _print_header(complete_dict, n_user)

    # fetch wavefunction information
    nbf = wfn.nmo()
    ndocc = wfn.nalpha()
    nvirt = nbf - ndocc

    c_occ = wfn.Ca_subset("AO", "OCC")
    c_vir = wfn.Ca_subset("AO", "VIR")

    # the vectors need to be in the MO basis. if they have the shape nbf x nbf, transform.
    for i in range(len(vectors)):
        shape = vectors[i].shape

        if shape == (nbf, nbf):
            vectors[i] = core.triplet(c_occ, vectors[i], c_vir, True, False, False)

        # verify that this vector already has the correct shape
        elif shape != (ndocc, nvirt):
            raise ValidationError('ERROR: "{}" has an unrecognized shape. Must be either ({}, {}) or ({}, {})'.format(
                vector_names[i], nbf, nbf, ndocc, nvirt))

    # compute response vectors for each input vector
    params = [kwargs.pop("conv_tol", 1.e-5), kwargs.pop("max_iter", 10), kwargs.pop("print_lvl", 2)]

    responses = wfn.cphf_solve(vectors, *params)

    # zip vectors, responses for easy access
    vectors = {k: v for k, v in zip(vector_names, vectors)}
    responses = {k: v for k, v in zip(vector_names, responses)}

    # compute response values, format output
    output = []
    for prop in complete_dict:

        # try to replicate the data structure of the input
        if 'User' in prop['name']:
            if prop['length'] == 0:
                output.append(responses[prop['vector names'][0]])
            else:
                buf = []
                for name in prop['vector names']:
                    buf.append(responses[name])
                output.append(buf)

        else:
            names = prop['vector names']
            dim = len(names)

            buf = np.zeros((dim, dim))

            for i, i_name in enumerate(names):
                for j, j_name in enumerate(names):
                    buf[i, j] = -1.0 * vectors[i_name].vector_dot(responses[j_name])

            output.append(buf)

    _print_output(complete_dict, output)

    return output
示例#15
0
def cpscf_linear_response(wfn, *args, **kwargs):
    """
    Compute the static properties from a reference wavefunction. The currently implemented properties are
      - dipole polarizability
      - quadrupole polarizability

    Parameters
    ----------
    wfn : psi4 wavefunction
        The reference wavefunction.
    args : list
        The list of arguments. For each argument, such as ``dipole polarizability``, will return the corresponding
        response. The user may also choose to pass a list or tuple of custom vectors.
    kwargs : dict
        Options that control how the response is computed. The following options are supported (with default values):
          - ``conv_tol``: 1e-5
          - ``max_iter``: 10
          - ``print_lvl``: 2

    Returns
    -------
    responses : list
        The list of responses.
    """
    mints = core.MintsHelper(wfn.basisset())

    # list of dictionaries to control response calculations, count how many user-supplied vectors we have
    complete_dict = []
    n_user = 0

    for arg in args:

        # for each string keyword, append the appropriate dictionary (vide supra) to our list
        if isinstance(arg, str):
            ret = property_dicts.get(arg)
            if ret:
                complete_dict.append(ret)
            else:
                raise ValidationError(
                    'Do not understand {}. Abort.'.format(arg))

        # the user passed a list of vectors. absorb them into a dictionary
        elif isinstance(arg, tuple) or isinstance(arg, list):
            complete_dict.append({
                'name':
                'User Vectors',
                'length':
                len(arg),
                'vectors':
                arg,
                'vector names': [
                    'User Vector {}_{}'.format(n_user, i)
                    for i in range(len(arg))
                ]
            })
            n_user += len(arg)

        # single vector passed. stored in a dictionary as a list of length 1 (can be handled as the case above that way)
        # note: the length is set to '0' to designate that it was not really passed as a list
        else:
            complete_dict.append({
                'name':
                'User Vector',
                'length':
                0,
                'vectors': [arg],
                'vector names': ['User Vector {}'.format(n_user)]
            })
            n_user += 1

    # vectors will be passed to the cphf solver, vector_names stores the corresponding names
    vectors = []
    vector_names = []

    # construct the list of vectors. for the keywords, fetch the appropriate tensors from MintsHelper
    for prop in complete_dict:
        if 'User' in prop['name']:
            for name, vec in zip(prop['vector names'], prop['vectors']):
                vectors.append(vec)
                vector_names.append(name)

        else:
            tmp_vectors = prop['mints_function'](mints)
            for tmp in tmp_vectors:
                tmp.scale(-2.0)  # RHF only
                vectors.append(tmp)
                vector_names.append(tmp.name)

    # do we have any vectors to work with?
    if len(vectors) == 0:
        raise ValidationError('I have no vectors to work with. Aborting.')

    # print information on module, vectors that will be used
    _print_header(complete_dict, n_user)

    # fetch wavefunction information
    nbf = wfn.nmo()
    ndocc = wfn.nalpha()
    nvirt = nbf - ndocc

    c_occ = wfn.Ca_subset("AO", "OCC")
    c_vir = wfn.Ca_subset("AO", "VIR")

    # the vectors need to be in the MO basis. if they have the shape nbf x nbf, transform.
    for i in range(len(vectors)):
        shape = vectors[i].shape

        if shape == (nbf, nbf):
            vectors[i] = core.triplet(c_occ, vectors[i], c_vir, True, False,
                                      False)

        # verify that this vector already has the correct shape
        elif shape != (ndocc, nvirt):
            raise ValidationError(
                'ERROR: "{}" has an unrecognized shape. Must be either ({}, {}) or ({}, {})'
                .format(vector_names[i], nbf, nbf, ndocc, nvirt))

    # compute response vectors for each input vector
    params = [
        kwargs.pop("conv_tol", 1.e-5),
        kwargs.pop("max_iter", 10),
        kwargs.pop("print_lvl", 2)
    ]

    responses = wfn.cphf_solve(vectors, *params)

    # zip vectors, responses for easy access
    vectors = {k: v for k, v in zip(vector_names, vectors)}
    responses = {k: v for k, v in zip(vector_names, responses)}

    # compute response values, format output
    output = []
    for prop in complete_dict:

        # try to replicate the data structure of the input
        if 'User' in prop['name']:
            if prop['length'] == 0:
                output.append(responses[prop['vector names'][0]])
            else:
                buf = []
                for name in prop['vector names']:
                    buf.append(responses[name])
                output.append(buf)

        else:
            names = prop['vector names']
            dim = len(names)

            buf = np.zeros((dim, dim))

            for i, i_name in enumerate(names):
                for j, j_name in enumerate(names):
                    buf[i, j] = -1.0 * vectors[i_name].vector_dot(
                        responses[j_name])

            output.append(buf)

    _print_output(complete_dict, output)

    return output
示例#16
0
def build_sapt_jk_cache(wfn_A, wfn_B, jk, do_print=True):
    """
    Constructs the DCBS cache data required to compute ELST/EXCH/IND
    """

    core.print_out("\n  ==> Preparing SAPT Data Cache <== \n\n")
    jk.print_header()

    cache = {}
    cache["wfn_A"] = wfn_A
    cache["wfn_B"] = wfn_B

    # First grab the orbitals
    cache["Cocc_A"] = wfn_A.Ca_subset("AO", "OCC")
    cache["Cvir_A"] = wfn_A.Ca_subset("AO", "VIR")

    cache["Cocc_B"] = wfn_B.Ca_subset("AO", "OCC")
    cache["Cvir_B"] = wfn_B.Ca_subset("AO", "VIR")

    cache["eps_occ_A"] = wfn_A.epsilon_a_subset("AO", "OCC")
    cache["eps_vir_A"] = wfn_A.epsilon_a_subset("AO", "VIR")

    cache["eps_occ_B"] = wfn_B.epsilon_a_subset("AO", "OCC")
    cache["eps_vir_B"] = wfn_B.epsilon_a_subset("AO", "VIR")

    # Build the densities as HF takes an extra "step"
    cache["D_A"] = core.doublet(
        cache["Cocc_A"], cache["Cocc_A"], False, True)
    cache["D_B"] = core.doublet(
        cache["Cocc_B"], cache["Cocc_B"], False, True)

    cache["P_A"] = core.doublet(
        cache["Cvir_A"], cache["Cvir_A"], False, True)
    cache["P_B"] = core.doublet(
        cache["Cvir_B"], cache["Cvir_B"], False, True)

    # Potential ints
    mints = core.MintsHelper(wfn_A.basisset())
    cache["V_A"] = mints.ao_potential()
    # cache["V_A"].axpy(1.0, wfn_A.Va())

    mints = core.MintsHelper(wfn_B.basisset())
    cache["V_B"] = mints.ao_potential()
    # cache["V_B"].axpy(1.0, wfn_B.Va())

    # Anything else we might need
    cache["S"] = wfn_A.S().clone()

    # J and K matrices
    jk.C_clear()

    # Normal J/K for Monomer A
    jk.C_left_add(wfn_A.Ca_subset("SO", "OCC"))
    jk.C_right_add(wfn_A.Ca_subset("SO", "OCC"))

    # Normal J/K for Monomer B
    jk.C_left_add(wfn_B.Ca_subset("SO", "OCC"))
    jk.C_right_add(wfn_B.Ca_subset("SO", "OCC"))

    # K_O J/K
    C_O_A = core.triplet(
        cache["D_B"], cache["S"], cache["Cocc_A"], False, False, False)
    jk.C_left_add(C_O_A)
    jk.C_right_add(cache["Cocc_A"])

    jk.compute()

    # Clone them as the JK object will overwrite.
    cache["J_A"] = jk.J()[0].clone()
    cache["K_A"] = jk.K()[0].clone()

    cache["J_B"] = jk.J()[1].clone()
    cache["K_B"] = jk.K()[1].clone()

    cache["J_O"] = jk.J()[2].clone()
    cache["K_O"] = jk.K()[2].clone()
    cache["K_O"].transpose_this()

    monA_nr = wfn_A.molecule().nuclear_repulsion_energy()
    monB_nr = wfn_B.molecule().nuclear_repulsion_energy()
    dimer_nr = wfn_A.molecule().extract_subsets(
        [1, 2]).nuclear_repulsion_energy()

    cache["nuclear_repulsion_energy"] = dimer_nr - monA_nr - monB_nr

    return cache
示例#17
0
def induction(cache, jk, do_print=True, maxiter=12, conv=1.e-8, do_response=True, Sinf=False, sapt_jk_B=None):
    """
    Compute Ind20 and Exch-Ind20 quantities from a SAPT cache and JK object.
    """

    if do_print:
        core.print_out("\n  ==> E20 Induction <== \n\n")

    # Build Induction and Exchange-Induction potentials
    S = cache["S"]

    D_A = cache["D_A"]
    V_A = cache["V_A"]
    J_A = cache["J_A"]
    K_A = cache["K_A"]

    D_B = cache["D_B"]
    V_B = cache["V_B"]
    J_B = cache["J_B"]
    K_B = cache["K_B"]

    K_O = cache["K_O"]
    J_O = cache["J_O"]

    jk.C_clear()

    jk.C_left_add(core.Matrix.chain_dot(D_B, S, cache["Cocc_A"]))
    jk.C_right_add(cache["Cocc_A"])

    jk.C_left_add(core.Matrix.chain_dot(D_B, S, D_A, S, cache["Cocc_B"]))
    jk.C_right_add(cache["Cocc_B"])

    jk.C_left_add(core.Matrix.chain_dot(D_A, S, D_B, S, cache["Cocc_A"]))
    jk.C_right_add(cache["Cocc_A"])

    jk.compute()

    J_Ot, J_P_B, J_P_A = jk.J()
    K_Ot, K_P_B, K_P_A = jk.K()

    # Exch-Ind Potential A
    EX_A = K_B.clone()
    EX_A.scale(-1.0)
    EX_A.axpy(-2.0, core.Matrix.chain_dot(S, D_B, J_A))
    EX_A.axpy(1.0, K_O)
    EX_A.axpy(-2.0, J_O)

    EX_A.axpy(1.0, core.Matrix.chain_dot(S, D_B, K_A))
    EX_A.axpy(-2.0, core.Matrix.chain_dot(J_B, D_B, S))
    EX_A.axpy(1.0, core.Matrix.chain_dot(K_B, D_B, S))

    EX_A.axpy(2.0, core.Matrix.chain_dot(S, D_B, J_A, D_B, S))
    EX_A.axpy(2.0, core.Matrix.chain_dot(J_B, D_A, S, D_B, S))
    EX_A.axpy(-1.0, core.Matrix.chain_dot(K_O, D_B, S))
    EX_A.axpy(2.0, J_P_B)

    EX_A.axpy(2.0, core.Matrix.chain_dot(S, D_B, S, D_A, J_B))
    EX_A.axpy(-1.0, core.Matrix.chain_dot(S, D_B,
                                          K_O, trans=[False, False, True]))
    EX_A.axpy(-1.0, core.Matrix.chain_dot(S, D_B, V_A))
    EX_A.axpy(-1.0, core.Matrix.chain_dot(V_B, D_B, S))
    EX_A.axpy(1.0, core.Matrix.chain_dot(S, D_B, V_A, D_B, S))
    EX_A.axpy(1.0, core.Matrix.chain_dot(V_B, D_A, S, D_B, S))
    EX_A.axpy(1.0, core.Matrix.chain_dot(S, D_B, S, D_A, V_B))

    EX_A = core.Matrix.chain_dot(
        cache["Cocc_A"], EX_A, cache["Cvir_A"], trans=[True, False, False])

    # Exch-Ind Potential B
    EX_B = K_A.clone()
    EX_B.scale(-1.0)
    EX_B.axpy(-2.0, core.Matrix.chain_dot(S, D_A, J_B))
    EX_B.axpy(1.0, K_O.transpose())
    EX_B.axpy(-2.0, J_O)

    EX_B.axpy(1.0, core.Matrix.chain_dot(S, D_A, K_B))
    EX_B.axpy(-2.0, core.Matrix.chain_dot(J_A, D_A, S))
    EX_B.axpy(1.0, core.Matrix.chain_dot(K_A, D_A, S))

    EX_B.axpy(2.0, core.Matrix.chain_dot(S, D_A, J_B, D_A, S))
    EX_B.axpy(2.0, core.Matrix.chain_dot(J_A, D_B, S, D_A, S))
    EX_B.axpy(-1.0, core.Matrix.chain_dot(K_O,
                                          D_A, S, trans=[True, False, False]))
    EX_B.axpy(2.0, J_P_A)

    EX_B.axpy(2.0, core.Matrix.chain_dot(S, D_A, S, D_B, J_A))
    EX_B.axpy(-1.0, core.Matrix.chain_dot(S, D_A, K_O))
    EX_B.axpy(-1.0, core.Matrix.chain_dot(S, D_A, V_B))
    EX_B.axpy(-1.0, core.Matrix.chain_dot(V_A, D_A, S))
    EX_B.axpy(1.0, core.Matrix.chain_dot(S, D_A, V_B, D_A, S))
    EX_B.axpy(1.0, core.Matrix.chain_dot(V_A, D_B, S, D_A, S))
    EX_B.axpy(1.0, core.Matrix.chain_dot(S, D_A, S, D_B, V_A))

    EX_B = core.Matrix.chain_dot(
        cache["Cocc_B"], EX_B, cache["Cvir_B"], trans=[True, False, False])

    # Build electrostatic potenital
    w_A = cache["V_A"].clone()
    w_A.axpy(2.0, cache["J_A"])

    w_B = cache["V_B"].clone()
    w_B.axpy(2.0, cache["J_B"])

    w_B_MOA = core.triplet(
        cache["Cocc_A"], w_B, cache["Cvir_A"], True, False, False)
    w_A_MOB = core.triplet(
        cache["Cocc_B"], w_A, cache["Cvir_B"], True, False, False)

    # Do uncoupled
    core.print_out("   => Uncoupled Induction <= \n\n")
    unc_x_B_MOA = w_B_MOA.clone()
    unc_x_B_MOA.np[
        :] /= (cache["eps_occ_A"].np.reshape(-1, 1) - cache["eps_vir_A"].np)
    unc_x_A_MOB = w_A_MOB.clone()
    unc_x_A_MOB.np[
        :] /= (cache["eps_occ_B"].np.reshape(-1, 1) - cache["eps_vir_B"].np)

    unc_ind_ab = 2.0 * unc_x_B_MOA.vector_dot(w_B_MOA)
    unc_ind_ba = 2.0 * unc_x_A_MOB.vector_dot(w_A_MOB)
    unc_indexch_ab = 2.0 * unc_x_B_MOA.vector_dot(EX_A)
    unc_indexch_ba = 2.0 * unc_x_A_MOB.vector_dot(EX_B)

    ret = {}
    ret["Ind20,u (A<-B)"] = unc_ind_ab
    ret["Ind20,u (A->B)"] = unc_ind_ba
    ret["Ind20,u"] = unc_ind_ab + unc_ind_ba
    ret["Exch-Ind20,u (A<-B)"] = unc_indexch_ab
    ret["Exch-Ind20,u (A->B)"] = unc_indexch_ba
    ret["Exch-Ind20,u"] = unc_indexch_ba + unc_indexch_ab

    plist = ["Ind20,u (A<-B)", "Ind20,u (A->B)", "Ind20,u", "Exch-Ind20,u (A<-B)",
             "Exch-Ind20,u (A->B)", "Exch-Ind20,u"]

    if do_print:
        for name in plist:
            # core.set_variable(name, ret[name])
            core.print_out(print_sapt_var(name, ret[name], short=True))
            core.print_out("\n")

    # Exch-Ind without S^2
    if Sinf:
        nocc_A = cache["Cocc_A"].shape[1]
        nocc_B = cache["Cocc_B"].shape[1]
        SAB = core.triplet(
            cache["Cocc_A"], cache["S"], cache["Cocc_B"], True, False, False)
        num_occ = nocc_A + nocc_B

        Sab = core.Matrix(num_occ, num_occ)
        Sab.np[:nocc_A, nocc_A:] = SAB.np
        Sab.np[nocc_A:, :nocc_A] = SAB.np.T
        Sab.np[np.diag_indices_from(Sab.np)] += 1
        Sab.power(-1.0, 1.e-14)

        Tmo_AA = core.Matrix.from_array(Sab.np[:nocc_A, :nocc_A])
        Tmo_BB = core.Matrix.from_array(Sab.np[nocc_A:, nocc_A:])
        Tmo_AB = core.Matrix.from_array(Sab.np[:nocc_A, nocc_A:])

        T_A = core.triplet(cache["Cocc_A"], Tmo_AA, cache["Cocc_A"], False, False, True)
        T_B = core.triplet(cache["Cocc_B"], Tmo_BB, cache["Cocc_B"], False, False, True)
        T_AB = core.triplet(cache["Cocc_A"], Tmo_AB, cache["Cocc_B"], False, False, True)

        sT_A = core.Matrix.chain_dot(cache["Cvir_A"], unc_x_B_MOA, Tmo_AA, cache["Cocc_A"],
            trans=[False, True, False, True])
        sT_B = core.Matrix.chain_dot(cache["Cvir_B"], unc_x_A_MOB, Tmo_BB, cache["Cocc_B"],
            trans=[False, True, False, True])
        sT_AB = core.Matrix.chain_dot(cache["Cvir_A"], unc_x_B_MOA, Tmo_AB, cache["Cocc_B"],
            trans=[False, True, False, True])
        sT_BA = core.Matrix.chain_dot(cache["Cvir_B"], unc_x_A_MOB, Tmo_AB, cache["Cocc_A"],
            trans=[False, True, True, True])

        jk.C_clear()

        jk.C_left_add(core.Matrix.chain_dot(cache["Cocc_A"], Tmo_AA))
        jk.C_right_add(cache["Cocc_A"])

        jk.C_left_add(core.Matrix.chain_dot(cache["Cocc_B"], Tmo_BB))
        jk.C_right_add(cache["Cocc_B"])

        jk.C_left_add(core.Matrix.chain_dot(cache["Cocc_A"], Tmo_AB))
        jk.C_right_add(cache["Cocc_B"])

        jk.compute()

        J_AA_inf, J_BB_inf, J_AB_inf = jk.J()
        K_AA_inf, K_BB_inf, K_AB_inf = jk.K()

        # A <- B
        EX_AA_inf = V_B.clone()
        EX_AA_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_AB, V_B, trans=[False, True, False]))
        EX_AA_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_B, V_B))
        EX_AA_inf.axpy(2.00, J_AB_inf)
        EX_AA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_AB_inf, trans=[False, True, False]))
        EX_AA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_B, J_AB_inf))
        EX_AA_inf.axpy(2.00, J_BB_inf)
        EX_AA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_BB_inf, trans=[False, True, False]))
        EX_AA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_B, J_BB_inf))
        EX_AA_inf.axpy(-1.00, K_AB_inf.transpose())
        EX_AA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_AB_inf, trans=[False, True, True]))
        EX_AA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_B, K_AB_inf, trans=[False, False, True]))
        EX_AA_inf.axpy(-1.00, K_BB_inf)
        EX_AA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_BB_inf, trans=[False, True, False]))
        EX_AA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_B, K_BB_inf))

        EX_AB_inf = V_A.clone()
        EX_AB_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_AB, V_A, trans=[False, True, False]))
        EX_AB_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_B, V_A))
        EX_AB_inf.axpy(2.00, J_AA_inf)
        EX_AB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_AA_inf, trans=[False, True, False]))
        EX_AB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_B, J_AA_inf))
        EX_AB_inf.axpy(2.00, J_AB_inf)
        EX_AB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_AB_inf, trans=[False, True, False]))
        EX_AB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_B, J_AB_inf))
        EX_AB_inf.axpy(-1.00, K_AA_inf)
        EX_AB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_AA_inf, trans=[False, True, False]))
        EX_AB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_B, K_AA_inf))
        EX_AB_inf.axpy(-1.00, K_AB_inf)
        EX_AB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_AB_inf, trans=[False, True, False]))
        EX_AB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_B, K_AB_inf))

        # B <- A
        EX_BB_inf = V_A.clone()
        EX_BB_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_AB, V_A))
        EX_BB_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_A, V_A))
        EX_BB_inf.axpy(2.00, J_AB_inf)
        EX_BB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_AB_inf))
        EX_BB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_A, J_AB_inf))
        EX_BB_inf.axpy(2.00, J_AA_inf)
        EX_BB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_AA_inf))
        EX_BB_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_A, J_AA_inf))
        EX_BB_inf.axpy(-1.00, K_AB_inf)
        EX_BB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_AB_inf))
        EX_BB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_A, K_AB_inf))
        EX_BB_inf.axpy(-1.00, K_AA_inf)
        EX_BB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_AA_inf))
        EX_BB_inf.axpy(1.00, core.Matrix.chain_dot(S, T_A, K_AA_inf))

        EX_BA_inf = V_B.clone()
        EX_BA_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_AB, V_B))
        EX_BA_inf.axpy(-1.00, core.Matrix.chain_dot(S, T_A, V_B))
        EX_BA_inf.axpy(2.00, J_BB_inf)
        EX_BA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_BB_inf))
        EX_BA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_A, J_BB_inf))
        EX_BA_inf.axpy(2.00, J_AB_inf)
        EX_BA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_AB, J_AB_inf))
        EX_BA_inf.axpy(-2.00, core.Matrix.chain_dot(S, T_A, J_AB_inf))
        EX_BA_inf.axpy(-1.00, K_BB_inf)
        EX_BA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_BB_inf))
        EX_BA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_A, K_BB_inf))
        EX_BA_inf.axpy(-1.00, K_AB_inf.transpose())
        EX_BA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_AB, K_AB_inf, trans=[False, False, True]))
        EX_BA_inf.axpy(1.00, core.Matrix.chain_dot(S, T_A, K_AB_inf, trans=[False, False, True]))

        unc_ind_ab_total = 2.0 * (sT_A.vector_dot(EX_AA_inf) + sT_AB.vector_dot(EX_AB_inf))
        unc_ind_ba_total = 2.0 * (sT_B.vector_dot(EX_BB_inf) + sT_BA.vector_dot(EX_BA_inf))
        unc_indexch_ab_inf = unc_ind_ab_total - unc_ind_ab
        unc_indexch_ba_inf = unc_ind_ba_total - unc_ind_ba

        ret["Exch-Ind20,u (A<-B) (S^inf)"] = unc_indexch_ab_inf
        ret["Exch-Ind20,u (A->B) (S^inf)"] = unc_indexch_ba_inf
        ret["Exch-Ind20,u (S^inf)"] = unc_indexch_ba_inf + unc_indexch_ab_inf

        if do_print:
            for name in plist[3:]:
                name = name + ' (S^inf)'

                core.print_out(print_sapt_var(name, ret[name], short=True))
                core.print_out("\n")

    # Do coupled
    if do_response:
        core.print_out("\n   => Coupled Induction <= \n\n")

        x_B_MOA, x_A_MOB = _sapt_cpscf_solve(
            cache, jk, w_B_MOA, w_A_MOB, 20, 1.e-6, sapt_jk_B=sapt_jk_B)

        ind_ab = 2.0 * x_B_MOA.vector_dot(w_B_MOA)
        ind_ba = 2.0 * x_A_MOB.vector_dot(w_A_MOB)
        indexch_ab = 2.0 * x_B_MOA.vector_dot(EX_A)
        indexch_ba = 2.0 * x_A_MOB.vector_dot(EX_B)

        ret["Ind20,r (A<-B)"] = ind_ab
        ret["Ind20,r (A->B)"] = ind_ba
        ret["Ind20,r"] = ind_ab + ind_ba
        ret["Exch-Ind20,r (A<-B)"] = indexch_ab
        ret["Exch-Ind20,r (A->B)"] = indexch_ba
        ret["Exch-Ind20,r"] = indexch_ba + indexch_ab

        if do_print:
            core.print_out("\n")
            for name in plist:
                name = name.replace(",u", ",r")

                # core.set_variable(name, ret[name])
                core.print_out(print_sapt_var(name, ret[name], short=True))
                core.print_out("\n")

        # Exch-Ind without S^2
        if Sinf:
            cT_A = core.Matrix.chain_dot(cache["Cvir_A"], x_B_MOA, Tmo_AA, cache["Cocc_A"],
                trans=[False, True, False, True])
            cT_B = core.Matrix.chain_dot(cache["Cvir_B"], x_A_MOB, Tmo_BB, cache["Cocc_B"],
                trans=[False, True, False, True])
            cT_AB = core.Matrix.chain_dot(cache["Cvir_A"], x_B_MOA, Tmo_AB, cache["Cocc_B"],
                trans=[False, True, False, True])
            cT_BA = core.Matrix.chain_dot(cache["Cvir_B"], x_A_MOB, Tmo_AB, cache["Cocc_A"],
                trans=[False, True, True, True])

            ind_ab_total = 2.0 * (cT_A.vector_dot(EX_AA_inf) + cT_AB.vector_dot(EX_AB_inf))
            ind_ba_total = 2.0 * (cT_B.vector_dot(EX_BB_inf) + cT_BA.vector_dot(EX_BA_inf))
            indexch_ab_inf = ind_ab_total - ind_ab
            indexch_ba_inf = ind_ba_total - ind_ba

            ret["Exch-Ind20,r (A<-B) (S^inf)"] = indexch_ab_inf
            ret["Exch-Ind20,r (A->B) (S^inf)"] = indexch_ba_inf
            ret["Exch-Ind20,r (S^inf)"] = indexch_ba_inf + indexch_ab_inf

            if do_print:
                for name in plist[3:]:
                    name = name.replace(",u", ",r") + ' (S^inf)'

                    core.print_out(print_sapt_var(name, ret[name], short=True))
                    core.print_out("\n")

    return ret
示例#18
0
def exchange(cache, jk, do_print=True):
    """
    Computes the E10 exchange (S^2 and S^inf) from a build_sapt_jk_cache datacache.
    """

    if do_print:
        core.print_out("\n  ==> E10 Exchange <== \n\n")

    # Build potenitals
    h_A = cache["V_A"].clone()
    h_A.axpy(2.0, cache["J_A"])
    h_A.axpy(-1.0, cache["K_A"])

    h_B = cache["V_B"].clone()
    h_B.axpy(2.0, cache["J_B"])
    h_B.axpy(-1.0, cache["K_B"])

    w_A = cache["V_A"].clone()
    w_A.axpy(2.0, cache["J_A"])

    w_B = cache["V_B"].clone()
    w_B.axpy(2.0, cache["J_B"])

    # Build inverse exchange metric
    nocc_A = cache["Cocc_A"].shape[1]
    nocc_B = cache["Cocc_B"].shape[1]
    SAB = core.triplet(
        cache["Cocc_A"], cache["S"], cache["Cocc_B"], True, False, False)
    num_occ = nocc_A + nocc_B

    Sab = core.Matrix(num_occ, num_occ)
    Sab.np[:nocc_A, nocc_A:] = SAB.np
    Sab.np[nocc_A:, :nocc_A] = SAB.np.T
    Sab.np[np.diag_indices_from(Sab.np)] += 1
    Sab.power(-1.0, 1.e-14)
    Sab.np[np.diag_indices_from(Sab.np)] -= 1.0

    Tmo_AA = core.Matrix.from_array(Sab.np[:nocc_A, :nocc_A])
    Tmo_BB = core.Matrix.from_array(Sab.np[nocc_A:, nocc_A:])
    Tmo_AB = core.Matrix.from_array(Sab.np[:nocc_A, nocc_A:])

    T_A = np.dot(cache["Cocc_A"], Tmo_AA).dot(cache["Cocc_A"].np.T)
    T_B = np.dot(cache["Cocc_B"], Tmo_BB).dot(cache["Cocc_B"].np.T)
    T_AB = np.dot(cache["Cocc_A"], Tmo_AB).dot(cache["Cocc_B"].np.T)

    S = cache["S"]

    D_A = cache["D_A"]
    P_A = cache["P_A"]

    D_B = cache["D_B"]
    P_B = cache["P_B"]

    # Compute the J and K matrices
    jk.C_clear()

    jk.C_left_add(cache["Cocc_A"])
    jk.C_right_add(core.doublet(cache["Cocc_A"], Tmo_AA, False, False))

    jk.C_left_add(cache["Cocc_B"])
    jk.C_right_add(core.doublet(cache["Cocc_A"], Tmo_AB, False, False))

    jk.C_left_add(cache["Cocc_A"])
    jk.C_right_add(core.Matrix.chain_dot(P_B, S, cache["Cocc_A"]))

    jk.compute()

    JT_A, JT_AB, Jij = jk.J()
    KT_A, KT_AB, Kij = jk.K()

    # Start S^2
    Exch_s2 = 0.0

    tmp = core.Matrix.chain_dot(D_A, S, D_B, S, P_A)
    Exch_s2 -= 2.0 * w_B.vector_dot(tmp)

    tmp = core.Matrix.chain_dot(D_B, S, D_A, S, P_B)
    Exch_s2 -= 2.0 * w_A.vector_dot(tmp)

    tmp = core.Matrix.chain_dot(P_A, S, D_B)
    Exch_s2 -= 2.0 * Kij.vector_dot(tmp)

    if do_print:
        core.print_out(print_sapt_var("Exch10(S^2) ", Exch_s2, short=True))
        core.print_out("\n")

    # Start Sinf
    Exch10 = 0.0
    Exch10 -= 2.0 * np.vdot(cache["D_A"], cache["K_B"])
    Exch10 += 2.0 * np.vdot(T_A, h_B.np)
    Exch10 += 2.0 * np.vdot(T_B, h_A.np)
    Exch10 += 2.0 * np.vdot(T_AB, h_A.np + h_B.np)
    Exch10 += 4.0 * np.vdot(T_B, JT_AB.np - 0.5 * KT_AB.np)
    Exch10 += 4.0 * np.vdot(T_A, JT_AB.np - 0.5 * KT_AB.np)
    Exch10 += 4.0 * np.vdot(T_B, JT_A.np - 0.5 * KT_A.np)
    Exch10 += 4.0 * np.vdot(T_AB, JT_AB.np - 0.5 * KT_AB.np.T)

    if do_print:
        core.set_variable("Exch10", Exch10)
        core.print_out(print_sapt_var("Exch10", Exch10, short=True))
        core.print_out("\n")

    return {"Exch10(S^2)": Exch_s2, "Exch10": Exch10}
示例#19
0
def df_fdds_dispersion(primary,
                       auxiliary,
                       cache,
                       leg_points=10,
                       leg_lambda=0.3,
                       do_print=True):

    rho_thresh = core.get_option("SAPT", "SAPT_FDDS_V2_RHO_CUTOFF")
    if do_print:
        core.print_out("\n  ==> E20 Dispersion (CHF FDDS) <== \n\n")
        core.print_out("   Legendre Points:  % 10d\n" % leg_points)
        core.print_out("   Lambda Shift:     % 10.3f\n" % leg_lambda)
        core.print_out("   Fxc Kernal:       % 10s\n" % "ALDA")
        core.print_out("   (P|Fxc|Q) Thresh: % 8.3e\n" % rho_thresh)

    # Build object
    df_matrix_keys = ["Cocc_A", "Cvir_A", "Cocc_B", "Cvir_B"]
    fdds_matrix_cache = {key: cache[key] for key in df_matrix_keys}

    df_vector_keys = ["eps_occ_A", "eps_vir_A", "eps_occ_B", "eps_vir_B"]
    fdds_vector_cache = {key: cache[key] for key in df_vector_keys}

    fdds_obj = core.FDDS_Dispersion(primary, auxiliary, fdds_matrix_cache,
                                    fdds_vector_cache)

    # Aux Densities
    D = fdds_obj.project_densities([cache["D_A"], cache["D_B"]])

    # Temps
    half_Saux = fdds_obj.aux_overlap().clone()
    half_Saux.power(-0.5, 1.e-12)

    halfp_Saux = fdds_obj.aux_overlap().clone()
    halfp_Saux.power(0.5, 1.e-12)

    # Builds potentials
    W_A = fdds_obj.metric().clone()
    W_A.axpy(1.0,
             _compute_fxc(D[0], half_Saux, halfp_Saux, rho_thresh=rho_thresh))

    W_B = fdds_obj.metric().clone()
    W_B.axpy(1.0,
             _compute_fxc(D[1], half_Saux, halfp_Saux, rho_thresh=rho_thresh))

    # Nuke the densities
    del D

    metric = fdds_obj.metric()
    metric_inv = fdds_obj.metric_inv()

    # Integrate
    core.print_out("\n   => Time Integration <= \n\n")

    val_pack = ("Omega", "Weight", "Disp20,u", "Disp20", "time [s]")
    core.print_out("% 12s % 12s % 14s % 14s % 10s\n" % val_pack)
    # print("% 12s % 12s % 14s % 14s % 10s" % val_pack)
    start_time = time.time()

    total_uc = 0
    total_c = 0

    for point, weight in zip(*np.polynomial.legendre.leggauss(leg_points)):

        omega = leg_lambda * (1.0 - point) / (1.0 + point)
        lambda_scale = ((2.0 * leg_lambda) / (point + 1.0)**2)

        # Monomer A
        X_A = fdds_obj.form_unc_amplitude("A", omega)

        # Coupled A
        X_A_coupled = X_A.clone()
        XSW_A = core.triplet(X_A, metric_inv, W_A, False, False, False)

        amplitude_inv = metric.clone()
        amplitude_inv.axpy(1.0, XSW_A)
        nremoved = 0
        amplitude = amplitude_inv.pseudoinverse(1.e-13, nremoved)
        amplitude.transpose_this()  # Why is this coming out transposed?
        X_A_coupled.axpy(
            -1.0, core.triplet(XSW_A, amplitude, X_A, False, False, False))
        del XSW_A, amplitude

        X_B = fdds_obj.form_unc_amplitude("B", omega)
        # print(np.linalg.norm(X_B))

        # Coupled B
        X_B_coupled = X_B.clone()
        XSW_B = core.triplet(X_B, metric_inv, W_B, False, False, False)

        amplitude_inv = metric.clone()
        amplitude_inv.axpy(1.0, XSW_B)
        amplitude = amplitude_inv.pseudoinverse(1.e-13, nremoved)
        amplitude.transpose_this()  # Why is this coming out transposed?
        X_B_coupled.axpy(
            -1.0, core.triplet(XSW_B, amplitude, X_B, False, False, False))
        del XSW_B, amplitude

        # Make sure the results are symmetrized
        for tensor in [X_A, X_B, X_A_coupled, X_B_coupled]:
            tensor.add(tensor.transpose())
            tensor.scale(0.5)

        # Combine
        tmp_uc = core.triplet(metric_inv, X_A, metric_inv, False, False, False)
        value_uc = tmp_uc.vector_dot(X_B)
        del tmp_uc

        tmp_c = core.triplet(metric_inv, X_A_coupled, metric_inv, False, False,
                             False)
        value_c = tmp_c.vector_dot(X_B_coupled)
        del tmp_c

        # Tally
        total_uc += value_uc * weight * lambda_scale
        total_c += value_c * weight * lambda_scale

        if do_print:
            tmp_disp_unc = value_uc * weight * lambda_scale
            tmp_disp = value_c * weight * lambda_scale
            fdds_time = time.time() - start_time

            val_pack = (omega, weight, tmp_disp_unc, tmp_disp, fdds_time)
            core.print_out("% 12.3e % 12.3e % 14.3e % 14.3e %10d\n" % val_pack)
            # print("% 12.3e % 12.3e % 14.3e % 14.3e %10d" % val_pack)

    Disp20_uc = -1.0 / (2.0 * np.pi) * total_uc
    Disp20_c = -1.0 / (2.0 * np.pi) * total_c

    core.print_out("\n")
    core.print_out(print_sapt_var("Disp20,u", Disp20_uc, short=True) + "\n")
    core.print_out(print_sapt_var("Disp20", Disp20_c, short=True) + "\n")

    return {"Disp20,FDDS (unc)": Disp20_uc, "Disp20": Disp20_c}
示例#20
0
 def _so_to_mo(self, X):
     """Transform (C_occ)^T X C_vir"""
     return core.triplet(self.Co, X, self.Cv, True, False, False)
示例#21
0
def _core_triplet(A, B, C, transA, transB, transC):
    warnings.warn(
        "Using `psi4.core.Matrix.triplet` instead of `psi4.core.triplet` is deprecated, and in 1.4 it will stop working\n",
        category=FutureWarning,
        stacklevel=2)
    return core.triplet(A, B, C, transA, transB, transC)
示例#22
0
 def _so_to_mo(self, X):
     """Transform (C_occ)^T X C_vir"""
     return core.triplet(self.Co, X, self.Cv, True, False, False)
示例#23
0
def mcscf_solver(ref_wfn):

    # Build CIWavefunction
    core.prepare_options_for_module("DETCI")
    ciwfn = core.CIWavefunction(ref_wfn)

    # Hush a lot of CI output
    ciwfn.set_print(0)

    # Begin with a normal two-step
    step_type = 'Initial CI'
    total_step = core.Matrix("Total step", ciwfn.get_dimension('OA'), ciwfn.get_dimension('AV'))
    start_orbs = ciwfn.get_orbitals("ROT").clone()
    ciwfn.set_orbitals("ROT", start_orbs)

    # Grab da options
    mcscf_orb_grad_conv = core.get_option("DETCI", "MCSCF_R_CONVERGENCE")
    mcscf_e_conv = core.get_option("DETCI", "MCSCF_E_CONVERGENCE")
    mcscf_max_macroiteration = core.get_option("DETCI", "MCSCF_MAXITER")
    mcscf_type = core.get_option("DETCI", "MCSCF_TYPE")
    mcscf_d_file = core.get_option("DETCI", "CI_FILE_START") + 3
    mcscf_nroots = core.get_option("DETCI", "NUM_ROOTS")
    mcscf_wavefunction_type = core.get_option("DETCI", "WFN")
    mcscf_ndet = ciwfn.ndet()
    mcscf_nuclear_energy = ciwfn.molecule().nuclear_repulsion_energy()
    mcscf_steplimit = core.get_option("DETCI", "MCSCF_MAX_ROT")
    mcscf_rotate = core.get_option("DETCI", "MCSCF_ROTATE")

    # DIIS info
    mcscf_diis_start = core.get_option("DETCI", "MCSCF_DIIS_START")
    mcscf_diis_freq = core.get_option("DETCI", "MCSCF_DIIS_FREQ")
    mcscf_diis_error_type = core.get_option("DETCI", "MCSCF_DIIS_ERROR_TYPE")
    mcscf_diis_max_vecs = core.get_option("DETCI", "MCSCF_DIIS_MAX_VECS")

    # One-step info
    mcscf_target_conv_type = core.get_option("DETCI", "MCSCF_ALGORITHM")
    mcscf_so_start_grad = core.get_option("DETCI", "MCSCF_SO_START_GRAD")
    mcscf_so_start_e = core.get_option("DETCI", "MCSCF_SO_START_E")
    mcscf_current_step_type = 'Initial CI'

    # Start with SCF energy and other params
    scf_energy = ciwfn.variable("HF TOTAL ENERGY")
    eold = scf_energy
    norb_iter = 1
    converged = False
    ah_step = False
    qc_step = False
    approx_integrals_only = True

    # Fake info to start with the initial diagonalization
    ediff = 1.e-4
    orb_grad_rms = 1.e-3

    # Grab needed objects
    diis_obj = solvers.DIIS(mcscf_diis_max_vecs)
    mcscf_obj = ciwfn.mcscf_object()

    # Execute the rotate command
    for rot in mcscf_rotate:
        if len(rot) != 4:
            raise p4util.PsiException("Each element of the MCSCF rotate command requires 4 arguements (irrep, orb1, orb2, theta).")

        irrep, orb1, orb2, theta = rot
        if irrep > ciwfn.Ca().nirrep():
            raise p4util.PsiException("MCSCF_ROTATE: Expression %s irrep number is larger than the number of irreps" %
                                    (str(rot)))

        if max(orb1, orb2) > ciwfn.Ca().coldim()[irrep]:
            raise p4util.PsiException("MCSCF_ROTATE: Expression %s orbital number exceeds number of orbitals in irrep" %
                                    (str(rot)))

        theta = np.deg2rad(theta)

        x = ciwfn.Ca().nph[irrep][:, orb1].copy()
        y = ciwfn.Ca().nph[irrep][:, orb2].copy()

        xp = np.cos(theta) * x - np.sin(theta) * y
        yp = np.sin(theta) * x + np.cos(theta) * y

        ciwfn.Ca().nph[irrep][:, orb1] = xp
        ciwfn.Ca().nph[irrep][:, orb2] = yp


    # Limited RAS functionality
    if core.get_local_option("DETCI", "WFN") == "RASSCF" and mcscf_target_conv_type != "TS":
        core.print_out("\n  Warning! Only the TS algorithm for RASSCF wavefunction is currently supported.\n")
        core.print_out("             Switching to the TS algorithm.\n\n")
        mcscf_target_conv_type = "TS"

    # Print out headers
    if mcscf_type == "CONV":
        mtype = "   @MCSCF"
        core.print_out("\n   ==> Starting MCSCF iterations <==\n\n")
        core.print_out("        Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n")
    elif mcscf_type == "DF":
        mtype = "   @DF-MCSCF"
        core.print_out("\n   ==> Starting DF-MCSCF iterations <==\n\n")
        core.print_out("           Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n")
    else:
        mtype = "   @AO-MCSCF"
        core.print_out("\n   ==> Starting AO-MCSCF iterations <==\n\n")
        core.print_out("           Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n")

    # Iterate !
    for mcscf_iter in range(1, mcscf_max_macroiteration + 1):

        # Transform integrals, diagonalize H
        ciwfn.transform_mcscf_integrals(approx_integrals_only)
        nci_iter = ciwfn.diag_h(abs(ediff) * 1.e-2, orb_grad_rms * 1.e-3)

        # After the first diag we need to switch to READ
        ciwfn.set_ci_guess("DFILE")

        ciwfn.form_opdm()
        ciwfn.form_tpdm()
        ci_grad_rms = ciwfn.variable("DETCI AVG DVEC NORM")

        # Update MCSCF object
        Cocc = ciwfn.get_orbitals("DOCC")
        Cact = ciwfn.get_orbitals("ACT")
        Cvir = ciwfn.get_orbitals("VIR")
        opdm = ciwfn.get_opdm(-1, -1, "SUM", False)
        tpdm = ciwfn.get_tpdm("SUM", True)
        mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm)

        current_energy = ciwfn.variable("MCSCF TOTAL ENERGY")

        orb_grad_rms = mcscf_obj.gradient_rms()
        ediff = current_energy - eold

        # Print iterations
        print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms, ci_grad_rms,
                        nci_iter, norb_iter, mcscf_current_step_type)
        eold = current_energy

        if mcscf_current_step_type == 'Initial CI':
            mcscf_current_step_type = 'TS'

        # Check convergence
        if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) < abs(mcscf_e_conv)) and\
            (mcscf_iter > 3) and not qc_step:

            core.print_out("\n       %s has converged!\n\n" % mtype);
            converged = True
            break


        # Which orbital convergence are we doing?
        if ah_step:
            converged, norb_iter, step = ah_iteration(mcscf_obj, print_micro=False)
            norb_iter += 1

            if converged:
                mcscf_current_step_type = 'AH'
            else:
                core.print_out("      !Warning. Augmented Hessian did not converge. Taking an approx step.\n")
                step = mcscf_obj.approx_solve()
                mcscf_current_step_type = 'TS, AH failure'

        else:
            step = mcscf_obj.approx_solve()
            step_type = 'TS'

        maxstep = step.absmax()
        if maxstep > mcscf_steplimit:
            core.print_out('      Warning! Maxstep = %4.2f, scaling to %4.2f\n' % (maxstep, mcscf_steplimit))
            step.scale(mcscf_steplimit / maxstep)

        xstep = total_step.clone()
        total_step.add(step)

        # Do or add DIIS
        if (mcscf_iter >= mcscf_diis_start) and ("TS" in mcscf_current_step_type):

            # Figure out DIIS error vector
            if mcscf_diis_error_type == "GRAD":
                error = core.triplet(ciwfn.get_orbitals("OA"),
                                            mcscf_obj.gradient(),
                                            ciwfn.get_orbitals("AV"),
                                            False, False, True)
            else:
                error = step

            diis_obj.add(total_step, error)

            if not (mcscf_iter % mcscf_diis_freq):
                total_step = diis_obj.extrapolate()
                mcscf_current_step_type = 'TS, DIIS'

        # Build the rotation by continuous updates
        if mcscf_iter == 1:
            totalU = mcscf_obj.form_rotation_matrix(total_step)
        else:
            xstep.axpy(-1.0, total_step)
            xstep.scale(-1.0)
            Ustep = mcscf_obj.form_rotation_matrix(xstep)
            totalU = core.doublet(totalU, Ustep, False, False)

        # Build the rotation directly (not recommended)
        # orbs_mat = mcscf_obj.Ck(start_orbs, total_step)

        # Finally rotate and set orbitals
        orbs_mat = core.doublet(start_orbs, totalU, False, False)
        ciwfn.set_orbitals("ROT", orbs_mat)

        # Figure out what the next step should be
        if (orb_grad_rms < mcscf_so_start_grad) and (abs(ediff) < abs(mcscf_so_start_e)) and\
                (mcscf_iter >= 2):

            if mcscf_target_conv_type == 'AH':
                approx_integrals_only = False
                ah_step = True
            elif mcscf_target_conv_type == 'OS':
                approx_integrals_only = False
                mcscf_current_step_type = 'OS, Prep'
                break
            else:
                continue
        #raise p4util.PsiException("")

    # If we converged do not do onestep
    if converged or (mcscf_target_conv_type != 'OS'):
        one_step_iters = []

    # If we are not converged load in Dvec and build iters array
    else:
        one_step_iters = range(mcscf_iter + 1, mcscf_max_macroiteration + 1)
        dvec = ciwfn.D_vector()
        dvec.init_io_files(True)
        dvec.read(0, 0)
        dvec.symnormalize(1.0, 0)

        ci_grad = ciwfn.new_civector(1, mcscf_d_file + 1, True, True)
        ci_grad.set_nvec(1)
        ci_grad.init_io_files(True)

    # Loop for onestep
    for mcscf_iter in one_step_iters:

        # Transform integrals and update the MCSCF object
        ciwfn.transform_mcscf_integrals(ciwfn.H(), False)
        ciwfn.form_opdm()
        ciwfn.form_tpdm()

        # Update MCSCF object
        Cocc = ciwfn.get_orbitals("DOCC")
        Cact = ciwfn.get_orbitals("ACT")
        Cvir = ciwfn.get_orbitals("VIR")
        opdm = ciwfn.get_opdm(-1, -1, "SUM", False)
        tpdm = ciwfn.get_tpdm("SUM", True)
        mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm)

        orb_grad_rms = mcscf_obj.gradient_rms()

        # Warning! Does not work for SA-MCSCF
        current_energy = mcscf_obj.current_total_energy()
        current_energy += mcscf_nuclear_energy

        ciwfn.set_variable("CI ROOT %d TOTAL ENERGY" % 1, current_energy)
        ciwfn.set_variable("CURRENT ENERGY", current_energy)
        ciwfn.set_energy(current_energy)

        docc_energy = mcscf_obj.current_docc_energy()
        ci_energy = mcscf_obj.current_ci_energy()

        # Compute CI gradient
        ciwfn.sigma(dvec, ci_grad, 0, 0)
        ci_grad.scale(2.0, 0)
        ci_grad.axpy(-2.0 * ci_energy, dvec, 0, 0)

        ci_grad_rms = ci_grad.norm(0)
        orb_grad_rms = mcscf_obj.gradient().rms()

        ediff = current_energy - eold

        print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms, ci_grad_rms,
                        nci_iter, norb_iter, mcscf_current_step_type)
        mcscf_current_step_type = 'OS'

        eold = current_energy

        if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) < abs(mcscf_e_conv)):

            core.print_out("\n       %s has converged!\n\n" % mtype);
            converged = True
            break

        # Take a step
        converged, norb_iter, nci_iter, step = qc_iteration(dvec, ci_grad, ciwfn, mcscf_obj)

        # Rotate integrals to new frame
        total_step.add(step)
        orbs_mat = mcscf_obj.Ck(ciwfn.get_orbitals("ROT"), step)
        ciwfn.set_orbitals("ROT", orbs_mat)


    core.print_out(mtype + " Final Energy: %20.15f\n" % current_energy)

    # Die if we did not converge
    if (not converged):
        if core.get_global_option("DIE_IF_NOT_CONVERGED"):
            raise p4util.PsiException("MCSCF: Iterations did not converge!")
        else:
            core.print_out("\nWarning! MCSCF iterations did not converge!\n\n")

    # Print out CI vector information
    if mcscf_target_conv_type == 'OS':
        dvec.close_io_files()
        ci_grad.close_io_files()

    # For orbital invariant methods we transform the orbitals to the natural or
    # semicanonical basis. Frozen doubly occupied and virtual orbitals are not
    # modified.
    if core.get_option("DETCI", "WFN") == "CASSCF":
        # Do we diagonalize the opdm?
        if core.get_option("DETCI", "NAT_ORBS"):
            ciwfn.ci_nat_orbs()
        else:
            ciwfn.semicanonical_orbs()

        # Retransform intragrals and update CI coeffs., OPDM, and TPDM
        ciwfn.transform_mcscf_integrals(approx_integrals_only)
        nci_iter = ciwfn.diag_h(abs(ediff) * 1.e-2, orb_grad_rms * 1.e-3)

        ciwfn.set_ci_guess("DFILE")

        ciwfn.form_opdm()
        ciwfn.form_tpdm()

    proc_util.print_ci_results(ciwfn, "MCSCF", scf_energy, current_energy, print_opdm_no=True)

    # Set final energy
    ciwfn.set_variable("CURRENT ENERGY", ciwfn.variable("MCSCF TOTAL ENERGY"))
    ciwfn.set_energy(ciwfn.variable("MCSCF TOTAL ENERGY"))

    # What do we need to cleanup?
    if core.get_option("DETCI", "MCSCF_CI_CLEANUP"):
        ciwfn.cleanup_ci()
    if core.get_option("DETCI", "MCSCF_DPD_CLEANUP"):
        ciwfn.cleanup_dpd()

    del diis_obj
    del mcscf_obj
    return ciwfn
示例#24
0
 def _so_to_mo(self, X):
     """Transform (C_occ)^T X C_vir"""
     return [
         core.triplet(self.Co[i], X[i], self.Cv[i], True, False, False)
         for i in (0, 1)
     ]
示例#25
0
def cpscf_linear_response(wfn, *args, **kwargs):
    """
    Compute the static properties from a reference wavefunction. The currently implemented properties are
      - dipole polarizability
      - quadrupole polarizability

    Parameters
    ----------
    wfn : psi4 wavefunction
        The reference wavefunction.
    args : list
        The list of arguments. For each argument, such as ``dipole polarizability``, will return the corresponding
        response.
    kwargs : dict
        Options that control how the response is computed. The following options are supported (with default values):
          - ``conv_tol``: 1e-5
          - ``max_iter``: 10
          - ``print_lvl``: 2

    Returns
    -------
    responses : list
        The list of response tensors.
    """
    mints = core.MintsHelper(wfn.basisset())

    # list of dictionaries to control response calculations
    complete_dict = []

    for arg in args:
        # for each string keyword, append the appropriate dictionary (vide supra) to our list
        if not isinstance(arg, str):
            # TODO: better to raise TypeError?
            raise ValidationError("Property name must be of type string.")
        ret = property_dicts.get(arg)
        if ret:
            complete_dict.append(ret)
        else:
            raise ValidationError(f"Do not understand '{arg}'.")

    # vectors will be passed to the cphf solver, vector_names stores the corresponding names
    vectors = []
    vector_names = []
    restricted = wfn.same_a_b_orbs()

    # construct the list of vectors. for the keywords, fetch the appropriate tensors from MintsHelper
    for prop in complete_dict:
        tmp_vectors = prop['mints_function'](mints)
        for tmp in tmp_vectors:
            tmp.scale(-1.0)
            vectors.append(tmp)
            vector_names.append(tmp.name)

    # do we have any vectors to work with?
    if len(vectors) == 0:
        raise ValidationError('No vectors to work with. Aborting.')

    # print information on module, vectors that will be used
    _print_header(complete_dict)

    nbf = wfn.basisset().nbf()
    Co = [wfn.Ca_subset("AO", "OCC"), wfn.Cb_subset("AO", "OCC")]
    Cv = [wfn.Ca_subset("AO", "VIR"), wfn.Cb_subset("AO", "VIR")]
    vectors_transformed = []
    for vector in vectors:
        if vector.shape != (nbf, nbf):
            raise ValidationError(
                f"Vector must be of shape ({nbf}, {nbf}) for transformation"
                " to the SO basis.")
        v_a = core.triplet(Co[0], vector, Cv[0], True, False, False)
        vectors_transformed.append(v_a)
        if not restricted:
            v_b = core.triplet(Co[1], vector, Cv[1], True, False, False)
            vectors_transformed.append(v_b)

    # compute response vectors for each input vector
    params = [
        kwargs.pop("conv_tol", 1.e-5),
        kwargs.pop("max_iter", 10),
        kwargs.pop("print_lvl", 2)
    ]

    responses_list = wfn.cphf_solve(vectors_transformed, *params)

    # zip vectors, responses for easy access
    if restricted:
        vectors = {
            f"{k}_a": v
            for k, v in zip(vector_names, vectors_transformed)
        }
        responses = {f"{k}_a": v for k, v in zip(vector_names, responses_list)}
    else:
        vectors = {
            f"{k}_a": v
            for k, v in zip(vector_names, vectors_transformed[::2])
        }
        vectors.update({
            f"{k}_b": v
            for k, v in zip(vector_names, vectors_transformed[1::2])
        })
        responses = {
            f"{k}_a": v
            for k, v in zip(vector_names, responses_list[::2])
        }
        responses.update(
            {f"{k}_b": v
             for k, v in zip(vector_names, responses_list[1::2])})
    # compute response values, format output
    output = []
    pref = -4.0 if restricted else -2.0
    for prop in complete_dict:
        names = prop['vector names']
        dim = len(names)
        buf = np.zeros((dim, dim))
        for i, i_name in enumerate(names):
            for j, j_name in enumerate(names):
                buf[i, j] = pref * vectors[f"{i_name}_a"].vector_dot(
                    responses[f"{j_name}_a"])
                if not restricted:
                    buf[i, j] += pref * vectors[f"{i_name}_b"].vector_dot(
                        responses[f"{j_name}_b"])
        output.append(buf)

    _print_output(complete_dict, output)

    return output
示例#26
0
def df_fdds_dispersion(primary, auxiliary, cache, leg_points=10, leg_lambda=0.3, do_print=True):

    rho_thresh = core.get_option("SAPT", "SAPT_FDDS_V2_RHO_CUTOFF")
    if do_print:
        core.print_out("\n  ==> E20 Dispersion (CHF FDDS) <== \n\n")
        core.print_out("   Legendre Points:  % 10d\n" % leg_points)
        core.print_out("   Lambda Shift:     % 10.3f\n" % leg_lambda)
        core.print_out("   Fxc Kernal:       % 10s\n" % "ALDA")
        core.print_out("   (P|Fxc|Q) Thresh: % 8.3e\n" % rho_thresh)

    # Build object
    df_matrix_keys = ["Cocc_A", "Cvir_A", "Cocc_B", "Cvir_B"]
    fdds_matrix_cache = {key: cache[key] for key in df_matrix_keys}

    df_vector_keys = ["eps_occ_A", "eps_vir_A", "eps_occ_B", "eps_vir_B"]
    fdds_vector_cache = {key: cache[key] for key in df_vector_keys}

    fdds_obj = core.FDDS_Dispersion(primary, auxiliary, fdds_matrix_cache, fdds_vector_cache)

    # Aux Densities
    D = fdds_obj.project_densities([cache["D_A"], cache["D_B"]])

    # Temps
    half_Saux = fdds_obj.aux_overlap().clone()
    half_Saux.power(-0.5, 1.e-12)

    halfp_Saux = fdds_obj.aux_overlap().clone()
    halfp_Saux.power(0.5, 1.e-12)

    # Builds potentials
    W_A = fdds_obj.metric().clone()
    W_A.axpy(1.0, _compute_fxc(D[0], half_Saux, halfp_Saux, rho_thresh=rho_thresh))

    W_B = fdds_obj.metric().clone()
    W_B.axpy(1.0, _compute_fxc(D[1], half_Saux, halfp_Saux, rho_thresh=rho_thresh))

    # Nuke the densities
    del D

    metric = fdds_obj.metric()
    metric_inv = fdds_obj.metric_inv()

    # Integrate
    core.print_out("\n   => Time Integration <= \n\n")

    val_pack = ("Omega", "Weight", "Disp20,u", "Disp20", "time [s]")
    core.print_out("% 12s % 12s % 14s % 14s % 10s\n" % val_pack)
    # print("% 12s % 12s % 14s % 14s % 10s" % val_pack)
    start_time = time.time()

    total_uc = 0
    total_c = 0

    for point, weight in zip(*np.polynomial.legendre.leggauss(leg_points)):

        omega = leg_lambda * (1.0 - point) / (1.0 + point)
        lambda_scale = ((2.0 * leg_lambda) / (point + 1.0)**2)

        # Monomer A
        X_A = fdds_obj.form_unc_amplitude("A", omega)

        # Coupled A
        X_A_coupled = X_A.clone()
        XSW_A = core.triplet(X_A, metric_inv, W_A, False, False, False)

        amplitude_inv = metric.clone()
        amplitude_inv.axpy(1.0, XSW_A)
        nremoved = 0
        amplitude = amplitude_inv.pseudoinverse(1.e-13, nremoved)
        amplitude.transpose_this()  # Why is this coming out transposed?
        X_A_coupled.axpy(-1.0, core.triplet(XSW_A, amplitude, X_A, False, False, False))
        del XSW_A, amplitude

        X_B = fdds_obj.form_unc_amplitude("B", omega)
        # print(np.linalg.norm(X_B))

        # Coupled B
        X_B_coupled = X_B.clone()
        XSW_B = core.triplet(X_B, metric_inv, W_B, False, False, False)

        amplitude_inv = metric.clone()
        amplitude_inv.axpy(1.0, XSW_B)
        amplitude = amplitude_inv.pseudoinverse(1.e-13, nremoved)
        amplitude.transpose_this()  # Why is this coming out transposed?
        X_B_coupled.axpy(-1.0, core.triplet(XSW_B, amplitude, X_B, False, False, False))
        del XSW_B, amplitude

        # Make sure the results are symmetrized
        for tensor in [X_A, X_B, X_A_coupled, X_B_coupled]:
            tensor.add(tensor.transpose())
            tensor.scale(0.5)

        # Combine
        tmp_uc = core.triplet(metric_inv, X_A, metric_inv, False, False, False)
        value_uc = tmp_uc.vector_dot(X_B)
        del tmp_uc

        tmp_c = core.triplet(metric_inv, X_A_coupled, metric_inv, False, False, False)
        value_c = tmp_c.vector_dot(X_B_coupled)
        del tmp_c

        # Tally
        total_uc += value_uc * weight * lambda_scale
        total_c += value_c * weight * lambda_scale

        if do_print:
            tmp_disp_unc = value_uc * weight * lambda_scale
            tmp_disp = value_c * weight * lambda_scale
            fdds_time = time.time() - start_time

            val_pack = (omega, weight, tmp_disp_unc, tmp_disp, fdds_time)
            core.print_out("% 12.3e % 12.3e % 14.3e % 14.3e %10d\n" % val_pack)
            # print("% 12.3e % 12.3e % 14.3e % 14.3e %10d" % val_pack)

    Disp20_uc = -1.0 / (2.0 * np.pi) * total_uc
    Disp20_c = -1.0 / (2.0 * np.pi) * total_c

    core.print_out("\n")
    core.print_out(print_sapt_var("Disp20,u", Disp20_uc, short=True) + "\n")
    core.print_out(print_sapt_var("Disp20", Disp20_c, short=True) + "\n")

    return {"Disp20,FDDS (unc)": Disp20_uc, "Disp20": Disp20_c}
示例#27
0
def mcscf_solver(ref_wfn):

    # Build CIWavefunction
    core.prepare_options_for_module("DETCI")
    ciwfn = core.CIWavefunction(ref_wfn)
    ciwfn.set_module("detci")

    # Hush a lot of CI output
    ciwfn.set_print(0)

    # Begin with a normal two-step
    step_type = 'Initial CI'
    total_step = core.Matrix("Total step", ciwfn.get_dimension('OA'),
                             ciwfn.get_dimension('AV'))
    start_orbs = ciwfn.get_orbitals("ROT").clone()
    ciwfn.set_orbitals("ROT", start_orbs)

    # Grab da options
    mcscf_orb_grad_conv = core.get_option("DETCI", "MCSCF_R_CONVERGENCE")
    mcscf_e_conv = core.get_option("DETCI", "MCSCF_E_CONVERGENCE")
    mcscf_max_macroiteration = core.get_option("DETCI", "MCSCF_MAXITER")
    mcscf_type = core.get_option("DETCI", "MCSCF_TYPE")
    mcscf_d_file = core.get_option("DETCI", "CI_FILE_START") + 3
    mcscf_nroots = core.get_option("DETCI", "NUM_ROOTS")
    mcscf_wavefunction_type = core.get_option("DETCI", "WFN")
    mcscf_ndet = ciwfn.ndet()
    mcscf_nuclear_energy = ciwfn.molecule().nuclear_repulsion_energy()
    mcscf_steplimit = core.get_option("DETCI", "MCSCF_MAX_ROT")
    mcscf_rotate = core.get_option("DETCI", "MCSCF_ROTATE")

    # DIIS info
    mcscf_diis_start = core.get_option("DETCI", "MCSCF_DIIS_START")
    mcscf_diis_freq = core.get_option("DETCI", "MCSCF_DIIS_FREQ")
    mcscf_diis_error_type = core.get_option("DETCI", "MCSCF_DIIS_ERROR_TYPE")
    mcscf_diis_max_vecs = core.get_option("DETCI", "MCSCF_DIIS_MAX_VECS")

    # One-step info
    mcscf_target_conv_type = core.get_option("DETCI", "MCSCF_ALGORITHM")
    mcscf_so_start_grad = core.get_option("DETCI", "MCSCF_SO_START_GRAD")
    mcscf_so_start_e = core.get_option("DETCI", "MCSCF_SO_START_E")
    mcscf_current_step_type = 'Initial CI'

    # Start with SCF energy and other params
    scf_energy = ciwfn.variable("HF TOTAL ENERGY")
    eold = scf_energy
    norb_iter = 1
    converged = False
    ah_step = False
    qc_step = False
    approx_integrals_only = True

    # Fake info to start with the initial diagonalization
    ediff = 1.e-4
    orb_grad_rms = 1.e-3

    # Grab needed objects
    diis_obj = solvers.DIIS(mcscf_diis_max_vecs)
    mcscf_obj = ciwfn.mcscf_object()

    # Execute the rotate command
    for rot in mcscf_rotate:
        if len(rot) != 4:
            raise p4util.PsiException(
                "Each element of the MCSCF rotate command requires 4 arguements (irrep, orb1, orb2, theta)."
            )

        irrep, orb1, orb2, theta = rot
        if irrep > ciwfn.Ca().nirrep():
            raise p4util.PsiException(
                "MCSCF_ROTATE: Expression %s irrep number is larger than the number of irreps"
                % (str(rot)))

        if max(orb1, orb2) > ciwfn.Ca().coldim()[irrep]:
            raise p4util.PsiException(
                "MCSCF_ROTATE: Expression %s orbital number exceeds number of orbitals in irrep"
                % (str(rot)))

        theta = np.deg2rad(theta)

        x = ciwfn.Ca().nph[irrep][:, orb1].copy()
        y = ciwfn.Ca().nph[irrep][:, orb2].copy()

        xp = np.cos(theta) * x - np.sin(theta) * y
        yp = np.sin(theta) * x + np.cos(theta) * y

        ciwfn.Ca().nph[irrep][:, orb1] = xp
        ciwfn.Ca().nph[irrep][:, orb2] = yp

    # Limited RAS functionality
    if core.get_local_option(
            "DETCI", "WFN") == "RASSCF" and mcscf_target_conv_type != "TS":
        core.print_out(
            "\n  Warning! Only the TS algorithm for RASSCF wavefunction is currently supported.\n"
        )
        core.print_out("             Switching to the TS algorithm.\n\n")
        mcscf_target_conv_type = "TS"

    # Print out headers
    if mcscf_type == "CONV":
        mtype = "   @MCSCF"
        core.print_out("\n   ==> Starting MCSCF iterations <==\n\n")
        core.print_out(
            "        Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n"
        )
    elif mcscf_type == "DF":
        mtype = "   @DF-MCSCF"
        core.print_out("\n   ==> Starting DF-MCSCF iterations <==\n\n")
        core.print_out(
            "           Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n"
        )
    else:
        mtype = "   @AO-MCSCF"
        core.print_out("\n   ==> Starting AO-MCSCF iterations <==\n\n")
        core.print_out(
            "           Iter         Total Energy       Delta E   Orb RMS    CI RMS  NCI NORB\n"
        )

    # Iterate !
    for mcscf_iter in range(1, mcscf_max_macroiteration + 1):

        # Transform integrals, diagonalize H
        ciwfn.transform_mcscf_integrals(approx_integrals_only)
        nci_iter = ciwfn.diag_h(abs(ediff) * 1.e-2, orb_grad_rms * 1.e-3)

        # After the first diag we need to switch to READ
        ciwfn.set_ci_guess("DFILE")

        ciwfn.form_opdm()
        ciwfn.form_tpdm()
        ci_grad_rms = ciwfn.variable("DETCI AVG DVEC NORM")

        # Update MCSCF object
        Cocc = ciwfn.get_orbitals("DOCC")
        Cact = ciwfn.get_orbitals("ACT")
        Cvir = ciwfn.get_orbitals("VIR")
        opdm = ciwfn.get_opdm(-1, -1, "SUM", False)
        tpdm = ciwfn.get_tpdm("SUM", True)
        mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm)

        current_energy = ciwfn.variable("MCSCF TOTAL ENERGY")

        ciwfn.reset_ci_H0block()

        orb_grad_rms = mcscf_obj.gradient_rms()
        ediff = current_energy - eold

        # Print iterations
        print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms,
                        ci_grad_rms, nci_iter, norb_iter,
                        mcscf_current_step_type)
        eold = current_energy

        if mcscf_current_step_type == 'Initial CI':
            mcscf_current_step_type = 'TS'

        # Check convergence
        if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) < abs(mcscf_e_conv)) and\
            (mcscf_iter > 3) and not qc_step:

            core.print_out("\n       %s has converged!\n\n" % mtype)
            converged = True
            break

        # Which orbital convergence are we doing?
        if ah_step:
            converged, norb_iter, step = ah_iteration(mcscf_obj,
                                                      print_micro=False)
            norb_iter += 1

            if converged:
                mcscf_current_step_type = 'AH'
            else:
                core.print_out(
                    "      !Warning. Augmented Hessian did not converge. Taking an approx step.\n"
                )
                step = mcscf_obj.approx_solve()
                mcscf_current_step_type = 'TS, AH failure'

        else:
            step = mcscf_obj.approx_solve()
            step_type = 'TS'

        maxstep = step.absmax()
        if maxstep > mcscf_steplimit:
            core.print_out(
                '      Warning! Maxstep = %4.2f, scaling to %4.2f\n' %
                (maxstep, mcscf_steplimit))
            step.scale(mcscf_steplimit / maxstep)

        xstep = total_step.clone()
        total_step.add(step)

        # Do or add DIIS
        if (mcscf_iter >= mcscf_diis_start) and ("TS"
                                                 in mcscf_current_step_type):

            # Figure out DIIS error vector
            if mcscf_diis_error_type == "GRAD":
                error = core.triplet(ciwfn.get_orbitals("OA"),
                                     mcscf_obj.gradient(),
                                     ciwfn.get_orbitals("AV"), False, False,
                                     True)
            else:
                error = step

            diis_obj.add(total_step, error)

            if not (mcscf_iter % mcscf_diis_freq):
                total_step = diis_obj.extrapolate()
                mcscf_current_step_type = 'TS, DIIS'

        # Build the rotation by continuous updates
        if mcscf_iter == 1:
            totalU = mcscf_obj.form_rotation_matrix(total_step)
        else:
            xstep.axpy(-1.0, total_step)
            xstep.scale(-1.0)
            Ustep = mcscf_obj.form_rotation_matrix(xstep)
            totalU = core.doublet(totalU, Ustep, False, False)

        # Build the rotation directly (not recommended)
        # orbs_mat = mcscf_obj.Ck(start_orbs, total_step)

        # Finally rotate and set orbitals
        orbs_mat = core.doublet(start_orbs, totalU, False, False)
        ciwfn.set_orbitals("ROT", orbs_mat)

        # Figure out what the next step should be
        if (orb_grad_rms < mcscf_so_start_grad) and (abs(ediff) < abs(mcscf_so_start_e)) and\
                (mcscf_iter >= 2):

            if mcscf_target_conv_type == 'AH':
                approx_integrals_only = False
                ah_step = True
            elif mcscf_target_conv_type == 'OS':
                approx_integrals_only = False
                mcscf_current_step_type = 'OS, Prep'
                break
            else:
                continue
        #raise p4util.PsiException("")

    # If we converged do not do onestep
    if converged or (mcscf_target_conv_type != 'OS'):
        one_step_iters = []

    # If we are not converged load in Dvec and build iters array
    else:
        one_step_iters = range(mcscf_iter + 1, mcscf_max_macroiteration + 1)
        dvec = ciwfn.D_vector()
        dvec.init_io_files(True)
        dvec.read(0, 0)
        dvec.symnormalize(1.0, 0)

        ci_grad = ciwfn.new_civector(1, mcscf_d_file + 1, True, True)
        ci_grad.set_nvec(1)
        ci_grad.init_io_files(True)

    # Loop for onestep
    for mcscf_iter in one_step_iters:

        # Transform integrals and update the MCSCF object
        ciwfn.transform_mcscf_integrals(ciwfn.H(), False)
        ciwfn.form_opdm()
        ciwfn.form_tpdm()

        # Update MCSCF object
        Cocc = ciwfn.get_orbitals("DOCC")
        Cact = ciwfn.get_orbitals("ACT")
        Cvir = ciwfn.get_orbitals("VIR")
        opdm = ciwfn.get_opdm(-1, -1, "SUM", False)
        tpdm = ciwfn.get_tpdm("SUM", True)
        mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm)

        orb_grad_rms = mcscf_obj.gradient_rms()

        # Warning! Does not work for SA-MCSCF
        current_energy = mcscf_obj.current_total_energy()
        current_energy += mcscf_nuclear_energy

        ciwfn.set_variable("CI ROOT %d TOTAL ENERGY" % 1, current_energy)
        ciwfn.set_variable("CURRENT ENERGY", current_energy)
        ciwfn.set_energy(current_energy)

        docc_energy = mcscf_obj.current_docc_energy()
        ci_energy = mcscf_obj.current_ci_energy()

        # Compute CI gradient
        ciwfn.sigma(dvec, ci_grad, 0, 0)
        ci_grad.scale(2.0, 0)
        ci_grad.axpy(-2.0 * ci_energy, dvec, 0, 0)

        ci_grad_rms = ci_grad.norm(0)
        orb_grad_rms = mcscf_obj.gradient().rms()

        ediff = current_energy - eold

        print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms,
                        ci_grad_rms, nci_iter, norb_iter,
                        mcscf_current_step_type)
        mcscf_current_step_type = 'OS'

        eold = current_energy

        if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) <
                                                     abs(mcscf_e_conv)):

            core.print_out("\n       %s has converged!\n\n" % mtype)
            converged = True
            break

        # Take a step
        converged, norb_iter, nci_iter, step = qc_iteration(
            dvec, ci_grad, ciwfn, mcscf_obj)

        # Rotate integrals to new frame
        total_step.add(step)
        orbs_mat = mcscf_obj.Ck(ciwfn.get_orbitals("ROT"), step)
        ciwfn.set_orbitals("ROT", orbs_mat)

    core.print_out(mtype + " Final Energy: %20.15f\n" % current_energy)

    # Die if we did not converge
    if (not converged):
        if core.get_global_option("DIE_IF_NOT_CONVERGED"):
            raise p4util.PsiException("MCSCF: Iterations did not converge!")
        else:
            core.print_out("\nWarning! MCSCF iterations did not converge!\n\n")

    # Print out CI vector information
    if mcscf_target_conv_type == 'OS':
        dvec.close_io_files()
        ci_grad.close_io_files()

    # For orbital invariant methods we transform the orbitals to the natural or
    # semicanonical basis. Frozen doubly occupied and virtual orbitals are not
    # modified.
    if core.get_option("DETCI", "WFN") == "CASSCF":
        # Do we diagonalize the opdm?
        if core.get_option("DETCI", "NAT_ORBS"):
            ciwfn.ci_nat_orbs()
        else:
            ciwfn.semicanonical_orbs()

        # Retransform intragrals and update CI coeffs., OPDM, and TPDM
        ciwfn.transform_mcscf_integrals(approx_integrals_only)
        ciwfn.set_print(1)
        ciwfn.set_ci_guess("H0_BLOCK")
        nci_iter = ciwfn.diag_h(mcscf_e_conv, mcscf_e_conv**0.5)

        ciwfn.form_opdm()
        ciwfn.form_tpdm()

    proc_util.print_ci_results(ciwfn,
                               "MCSCF",
                               scf_energy,
                               current_energy,
                               print_opdm_no=True)

    # Set final energy
    ciwfn.set_variable("CURRENT ENERGY", ciwfn.variable("MCSCF TOTAL ENERGY"))
    ciwfn.set_energy(ciwfn.variable("MCSCF TOTAL ENERGY"))

    # What do we need to cleanup?
    if core.get_option("DETCI", "MCSCF_CI_CLEANUP"):
        ciwfn.cleanup_ci()
    if core.get_option("DETCI", "MCSCF_DPD_CLEANUP"):
        ciwfn.cleanup_dpd()

    del diis_obj
    del mcscf_obj
    return ciwfn