def pytest_runtest_call(item): # seed = int(item.config.getoption('--pnl-seed')) seed = 0 random.seed(seed) np.random.seed(seed) from psyneulink.core.globals.utilities import set_global_seed set_global_seed(seed)
def pytest_runtest_call(item): # seed = int(item.config.getoption('--pnl-seed')) seed = 0 np.random.seed(seed) set_global_seed(seed) if 'pytorch' in item.keywords: assert pytorch_available torch.manual_seed(seed)
def __init__(self): self.seed = int.from_bytes(os.urandom(4), byteorder="big") from psyneulink.core.globals.utilities import set_global_seed set_global_seed(self.seed) np.random.seed(self.seed+1) # Setup a Gym Forager environment for the game self.gym_forager_env = ForagerEnv(obs_type='egocentric', incl_values=False, frameskip=2) self.gym_forager_env.seed(self.seed+2) # Setup an instance of the double DQN agent for determining optimal actions self.ddqn_agent = DoubleDQNAgent(model_load_path=MODEL_PATH, eval_mode=True, save_frames=False, render=RENDER, env=self.gym_forager_env) # Setup the PsyNeuLink composition self._setup_composition()
from psyneulink import * from double_dqn import DoubleDQNAgent from gym_forager.envs.forager_env import ForagerEnv parser = argparse.ArgumentParser() parser.add_argument("--seed", type=int, default=int.from_bytes(os.urandom(4), byteorder="big"), help='Random seed, seed from os.urandom if unspecified.') #args = parser.parse_args() SEED = int.from_bytes(os.urandom(4), byteorder="big") from psyneulink.core.globals.utilities import set_global_seed set_global_seed(SEED) np.random.seed(SEED+1) # ********************************************************************************************************************* # *********************************************** CONSTANTS *********************************************************** # ********************************************************************************************************************* # Runtime switches: MPI_IMPLEMENTATION = True RENDER = False PNL_COMPILE = False RUN = True SHOW_GRAPH = False MODEL_PATH = '../../../../double-dqn/models/trained_models/policy_net_trained_0.99_20190214-1651.pt' # Switch for determining actual action taken in each step