def show(self): """ This function ... :return: """ print("") print("Best parameter values:") print("") for label in self.best_parameter_values: print(" - " + label + ": " + stringify.stringify(self.best_parameter_values[label])[1]) print("") print("Best luminosities:") print("") for filter_name in self.best_luminosities: print(" " + filter_name + ":") print("") for index in range(len(self.best_luminosities)): print(" - component #" + str(index) + ": " + stringify.stringify(self.best_luminosities[filter_name] [index])[1]) print("")
def set_fwhms(self): """ This function ... :return: """ # Inform the user log.info("Setting the FWHMs ...") # Loop over the filters for fltr in self.frames: # Get the fwhm if has_variable_fwhm(fltr): fwhm = fwhms[str(fltr)] else: fwhm = get_fwhm(fltr) # Debugging log.debug("The FWHM of the '" + str(fltr) + "' image is " + stringify.stringify(fwhm)[1]) # Set self.real_fwhms[fltr] = fwhm
def make_rotation_masks(self): """ This function ... :return: """ # Inform the user log.info("Making rotation masks ...") # Loop over the filters for fltr in self.frames: # Debugging log.info("Making rotation mask for the '" + str(fltr) + "' image ...") # Get the frame frame = self.frames[fltr] # Rotate if self.config.rotate: # Choose a random rotation angle angle = Angle(np.random.uniform(-90, 90), "deg") # Debugging log.debug("The random rotation angle is '" + stringify.stringify(angle)[1] + "'") # Create mask mask = frame.rotation_mask(angle) # Don't rotate else: mask = Mask.empty_like(frame) # Set the mask self.rotation_masks[fltr] = mask
# Show the properties for prop_name in properties: description = properties[prop_name].description ptype = properties[prop_name].ptype min_value = properties[prop_name].min max_value = properties[prop_name].max default = properties[prop_name].default choices = properties[prop_name].choices item = properties[prop_name].item string = fmt.blue + prop_name + fmt.reset string += " [type: " + ptype + "]" if min_value is not None: string += " [min: " + stringify.stringify_not_list(min_value)[1] + "]" if max_value is not None: string += " [max: " + stringify.stringify_not_list(max_value)[1] + "]" if default is not None: string += " [default: " + stringify.stringify_not_list(default)[1] + "]" if choices is not None: string += " [choices: " + stringify.stringify(choices.keys())[1] + "]" string += " " + fmt.darkgray + stringify.stringify_string_fancy(description, lines_prefix=" ")[1] + fmt.reset if item: string += fmt.red + " [SIMULATION ITEM] " + fmt.reset print(" - " + string) print("") #print("") # -----------------------------------------------------------------
def make_point_sources_fixed_fwhm(self, masks=None): """ This function ... :param masks: :return: """ # Inform the user log.info("Making point sources with a fixed FWHM in each band ...") # Loop over the 'star' filters for fltr in self.star_filters: # Debugging log.debug("Making point sources for the '" + str(fltr) + "' image ...") # Get pixelscale pixelscale = self.frames[fltr].average_pixelscale # Debugging log.debug("The pixelscale of the image is " + stringify.stringify(pixelscale)[1]) # Determine the FWHM in pixel coordinates fwhm_pix = self.real_fwhms[fltr].to("arcsec").value / pixelscale.to("arcsec").value # Determine sigma sigma = statistics.fwhm_to_sigma * fwhm_pix # Only 'render' the Gaussian locally origin = PixelCoordinate(0.0, 0.0) amplitude = 1. min_x, max_x, min_y, max_y, rel_center = determine_patch_for_psf(origin, amplitude, sigma, keep_in_frame=False) # Make the model model = create_model(self.config.psf_model, amplitude, rel_center, sigma) # Evalute the model y, x = np.indices((max_y - min_y, max_x - min_x)) data = model(x, y) # Keep track of the number of sources counter = 0 # Loop over the coordinates in the point sources catalog for coordinate in self.point_source_catalog.coordinates(): counter += 1 # Debugging log.debug("Adding source " + str(counter) + " of " + str(len(self.point_source_catalog)) + " ...") # Check whether it falls in the frame if not self.frames[fltr].contains(coordinate): continue # Convert into pixel coordinate pixel_coordinate = coordinate.to_pixel(self.frames[fltr].wcs) # Get the corresponding pixel pixel = Pixel.for_coordinate(pixel_coordinate) # Check whether not masked if masks is not None and fltr in masks and masks[fltr][pixel.y, pixel.x]: continue # Generate a random amplitude (from 100 till 100 000) amplitude_exponent = np.random.uniform(2., 5.) amplitude = 10 ** amplitude_exponent # Calculate absolute minima and maxima source_min_x = min_x + pixel.x source_max_x = max_x + pixel.x source_min_y = min_y + pixel.y source_max_y = max_y + pixel.y source_xsize = source_max_x - source_min_x source_ysize = source_max_y - source_min_y # Correct if source_min_x < 0: cut_x_min = - source_min_x source_min_x = 0 else: cut_x_min = 0 if source_max_x >= self.frames[fltr].xsize: cut_x_max = source_xsize - (source_max_x - self.frames[fltr].xsize) source_max_x = self.frames[fltr].xsize else: cut_x_max = source_xsize if source_min_y < 0: cut_y_min = - source_min_y source_min_y = 0 else: cut_y_min = 0 if source_max_y >= self.frames[fltr].ysize: cut_y_max = source_ysize - (source_max_y - self.frames[fltr].ysize) source_max_y = self.frames[fltr].ysize else: cut_y_max = source_ysize # Create the final data for this source source_data = data[cut_y_min:cut_y_max, cut_x_min:cut_x_max] * amplitude # Add the data self.frames[fltr][source_min_y:source_max_y, source_min_x:source_max_x] += source_data
def make_point_sources_variable_fwhm(self, masks=None): """ THis function ... :param masks: :return: """ # Inform the user log.info("Making point sources with a variable FWHM in each band ...") # Loop over the 'star' filters for fltr in self.star_filters: # Debugging log.debug("Making point sources for the '" + str(fltr) + "' image ...") # Get y and x if not self.config.only_local: y, x = np.indices(self.frames[fltr].shape) else: y = x = None # Get pixelscale pixelscale = self.frames[fltr].average_pixelscale # Debugging log.debug("The pixelscale of the image is " + stringify.stringify(pixelscale)[1]) # Determine the FWHM in pixel coordinates fwhm_pix = self.real_fwhms[fltr].to("arcsec").value / pixelscale.to("arcsec").value counter = 0 # Loop over the coordinates in the point sources catalog for coordinate in self.point_source_catalog.coordinates(): counter += 1 # Debugging log.debug("Adding point source " + str(counter) + " of " + str(len(self.point_source_catalog)) + " ...") # Check whether it falls in the frame if not self.frames[fltr].contains(coordinate): continue # Convert into pixel coordinate pixel_coordinate = coordinate.to_pixel(self.frames[fltr].wcs) # Get the corresponding pixel pixel = Pixel.for_coordinate(pixel_coordinate) # Check whether not masked if masks is not None and fltr in masks and masks[fltr][pixel.y, pixel.x]: continue # Generate random deviation x_deviation = np.random.normal(0.0, 1.) y_deviation = np.random.normal(0.0, 1.) # Debugging log.debug("Random pixel position deviation is (" + str(x_deviation) + ", " + str(y_deviation) + ")") # Alter pixel coordinate pixel_coordinate.x += x_deviation pixel_coordinate.y += y_deviation # Generate random deviation from FWHM fwhm_deviation = np.random.normal(0.0, 0.05 * fwhm_pix) # Debugging log.debug("Random FWHM deviation (on a FWHM of " + str(fwhm_pix) + ") is " + str(fwhm_deviation)) # Add the deviation fwhm_pix += fwhm_deviation # Generate a random amplitude (from 100 till 100 000) amplitude_exponent = np.random.uniform(2., 5.) amplitude = 10**amplitude_exponent # Determine sigma sigma = statistics.fwhm_to_sigma * fwhm_pix # Only 'render' the Gaussian locally if self.config.only_local: min_x, max_x, min_y, max_y, rel_center = determine_patch_for_psf(pixel_coordinate, amplitude, sigma, max_x_pixel=self.frames[fltr].xsize-1, max_y_pixel=self.frames[fltr].ysize-1, keep_in_frame=True) # Render each Gaussian over the entire frame else: min_x = max_x = min_y = max_y = None rel_center = pixel_coordinate # Make the model model = create_model(self.config.psf_model, amplitude, rel_center, sigma) # Evaluate the model if self.config.only_local: y, x = np.indices((max_y - min_y, max_x - min_x)) data = model(x, y) # Add the data if self.config.only_local: self.frames[fltr][min_y:max_y, min_x:max_x] += data else: self.frames[fltr] += data
def load_dictionary(self, dictionary_name, dictionary, local_temp_path, remote_temp_path=None): """ This function ... :param dictionary_name: :param dictionary: :param local_temp_path: :param remote_temp_path: :return: """ # Set temp paths temp_path = local_temp_path # Check if remote temp path is defined if remote_temp_path is None: remote_temp_path = self.session_temp_directory # Import the parsing module remotely self.import_package("parsing", from_name="pts.core.tools", show_output=log.is_debug) # Paths to input files that have to be uploaded local_input_filepaths = [] # Depending paths depending_filepaths = dict() # Strings input_strings = dict() # E.G. # dictionary = {"a": OBJECT_A, "b": OBJECT_B} # Loop over the names of the input objects for name in dictionary: # name = "a" # Get the value value = dictionary[name] # value = OBJECT_A # Check whether extension is defined if hasattr(value, "default_extension"): # Determine filepath path = fs.join(temp_path, name + "." + value.default_extension) # path = .../a.ext # Save dictionary[name].saveto(path) # Add the filepath local_input_filepaths.append(path) # Check whether this object has depending paths if hasattr(value, "get_depending_paths"): # Get the local depending filepaths local_depending_filepaths = value.get_depending_paths() # = dictionary # Set the depending filepaths for this input object depending_filepaths[name] = local_depending_filepaths # Extension is not defined else: # Try to convert the object to a string ptype, string = stringify(value) # Add to dictinoary input_strings[name] = (ptype, string) #### UPLOAD THE INPUT : # Upload the input files self.remote.upload_retry(local_input_filepaths, remote_temp_path, show_output=log.is_debug) # UPLOAD DEPENDING FILEPATHS remote_depending_filepaths = dict() for name in depending_filepaths: # name = "a" # Create remote directory for this input object dirname = name + "_depending" dirpath = fs.join(remote_temp_path, dirname) self.create_directory(dirpath) # Initialize remote_depending_filepaths[name] = dict() # Upload all depending index = 0 for label in depending_filepaths[name]: # Get the local filepath local_depending_filepath = depending_filepaths[name][label] # Determine new name for the file extension = fs.get_extension(local_depending_filepath) new_name = str(index) + "." + extension # Upload the file, giving it a new name remote_depending_filepath = self.remote.upload_file_to(local_depending_filepath, dirpath, new_name=new_name, show_output=log.is_debug) # Set the remote path remote_depending_filepaths[name][label] = remote_depending_filepath # Increment the counter index += 1 ### LOAD THE INPUT DICT REMOTELY # Initialize the remote input dictionary self.send_line(dictionary_name + " = dict()", show_output=log.is_debug) # Add the stuff for name in dictionary: # Get the value value = dictionary[name] # Check whether extension is defined if hasattr(value, "default_extension"): # Determine the remote filepath remote_filepath = fs.join(remote_temp_path, name + "." + value.default_extension) # Import the class of the filetype remotely classpath = str(type(value)).split("'")[1].split("'")[0] modulepath, classname = classpath.rsplit(".", 1) self.send_line("input_module = importlib.import_module('" + modulepath + "')", show_output=log.is_debug) # get the module of the class self.send_line("input_cls = getattr(input_module, '" + classname + "')", show_output=log.is_debug) # get the class # Open the input file if name in depending_filepaths: self.send_line("input_dict['" + name + "'] = input_cls.from_file('" + remote_filepath + "', check=False)", show_output=True) else: self.send_line("input_dict['" + name + "'] = input_cls.from_file('" + remote_filepath + "')", show_output=True) # Check whether depending paths have to be adjusted if name in depending_filepaths: # Loop over each label for label in depending_filepaths[name]: # Get the remote filepath depending_filepath = remote_depending_filepaths[name][label] # Set the depending path self.send_line("input_dict['" + name + "'].set_depending_path('" + label + "', '" + depending_filepath + "')", show_output=True) # Extension is not defined else: # Get the parsing type and the string ptype, string = input_strings[name] # Get the parsing function remotely self.send_line("parsing_function = getattr(parsing, '" + ptype + "')") # Parse the input object self.send_line("input_dict['" + name + "'] = parsing_function('" + string + "')")
print(" - position: " + str(sample.get_position(name))) print(" - D25: " + str(sample.get_d25(name))) print(" - R25: " + str(sample.get_r25(name))) print("") print(" - stage: " + str(info["Hubble Stage"][0])) print(" - V: " + str(info["V"][0])) print(" - inclination: " + str(info["Inclination"][0])) print("") print(fmt.red + fmt.underlined + "Images:" + fmt.reset) print("") #for name in image_names: print(" - " + name) #print("") print(" " + "\n ".join(wrap(stringify.stringify(image_filters)[1], 100))) print("") #urls = database.get_image_urls(name, error_maps=False) #print(urls) #database.reset(username, password) # Open the cutouts file fs.open_file(path) # Create the photometry photometry = DustPediaPhotometry() # Get the aperture aperture = photometry.get_aperture(name)
from pts.core.basics.configuration import ConfigurationDefinition, parse_arguments # ----------------------------------------------------------------- # Create the configuration definition = ConfigurationDefinition() definition.add_positional_optional( "match", "string", "only show quantities with names that contain this string") # Parse config = parse_arguments("skirt_quantities", definition) # ----------------------------------------------------------------- # Create the SKIRT smile schema smile = SKIRTSmileSchema() print("") for quantity in smile.quantities: units = smile.units_for_quantity(quantity) print(fmt.green + fmt.underlined + quantity + fmt.reset + ": " + stringify.stringify(units)[1].replace(" ", "").replace(",", ", ") + " [PTS: " + skirt_quantities_to_pts_quantities[quantity] + "]") print("") #print("") # -----------------------------------------------------------------