def dummy_ts(self): return timeseries.TimeSeries(np.linspace(0, 10, 10), dims=("x", ), coords={ "x": range(10), "samplerate": 1 })
def setup_class(cls): times = np.linspace(0, 1, 1000) ts = np.sin(8 * times) + np.sin(16 * times) + np.sin(32 * times) cls.timeseries = timeseries.TimeSeries(data=ts, dims=('time'), coords={ 'time': times, 'samplerate': 1000 })
def time_series(): times = np.linspace(0, 1, 1000) ts = np.sin(8 * times) + np.sin(16 * times) + np.sin(32 * times) return timeseries.TimeSeries(data=ts, dims=('time'), coords={ 'time': times, 'samplerate': 1000 })
def setup_class(self): self.times = times = np.linspace(0, 1, 1000) self.data = np.sin(8 * times) + np.sin(16 * times) + np.sin(32 * times) self.freqs = np.array([10, 20], dtype=float) self.timeseries = timeseries.TimeSeries(data=self.data[None, :], coords={ 'offsets': [0], 'time': self.times, 'samplerate': 1000 }, dims=('offsets', 'time'))
def test_non_double(self): """Test that we can use a TimeSeries that starts out as a dtype other than double. """ lim = 10000 data = np.random.uniform(-lim, lim, (100, 1000)).astype(np.int16) ts = timeseries.TimeSeries(data=data, dims=("x", "time"), coords={ "x": np.linspace(0, data.shape[0], data.shape[0]), "time": np.arange(data.shape[1]), "samplerate": 1, }) mwf = MorletWaveletFilter(ts, np.array(range(70, 171, 10)), output="power") mwf.filter()