'probe_type': 'gaussian', 'probe_mag_sigma': 6, 'probe_phase_sigma': 6, 'probe_phase_max': 0.5, 'forward_algorithm': 'fresnel', 'object_type': 'phase_only', 'probe_pos': [(y, x) for y in (np.arange(66) * 5) - 36 for x in (np.arange(68) * 5) - 36], 'finite_support_mask': None, 'free_prop_cm': 'inf', 'optimizer': 'adam', 'two_d_mode': True, 'shared_file_object': False, 'use_checkpoint': False } params = params_2d_cell # n_ls = ['nonoise', 'n1e9', 'n1e8', 'n1e7', 'n1e6', 'n1e5', 'n1e4'] n_ls = ['comp_n1e4', 'comp_n4e4', 'comp_n1e5', 'comp_n4e5', 'comp_n1e6', 'comp_n1.75e6', 'comp_n4e6', 'comp_n1e7', 'comp_n1.75e7', 'comp_n4e7', 'comp_n1e8', 'comp_n1.75e8', 'comp_n4e8'] # n_ls = ['nonoise', 'dss_comp_n1e4', 'dss_comp_n4e4', 'dss_comp_n1e5', 'dss_comp_n4e5', 'dss_comp_n1e6', 'dss_comp_n1.75e6', 'dss_comp_n4e6', 'dss_comp_n1e7', 'dss_comp_n1.75e7', 'dss_comp_n4e7', 'dss_comp_n1e8', 'dss_comp_n1.75e8', 'dss_comp_n4e8'] # n_ls = ['nonoise', 'mix_comp_n1e4', 'mix_comp_n4e4', 'mix_comp_n1e5', 'mix_comp_n4e5', 'mix_comp_n1e6', 'mix_comp_n1.75e6', 'mix_comp_n4e6', 'mix_comp_n1e7', 'mix_comp_n1.75e7', 'mix_comp_n4e7', 'mix_comp_n1e8', 'mix_comp_n1.75e8', 'mix_comp_n4e8'] n_ls = [x + '_ref' for x in n_ls] for n_ph in n_ls: if 'nonoise' in n_ph: params['fname'] = 'data_cell_phase.h5' else: params['fname'] = 'data_cell_phase_{}.h5'.format(n_ph) params['output_folder'] = n_ph reconstruct_ptychography(**params)
reconstruct_ptychography(fname=params['fname'], probe_pos=params['probe_pos'], probe_size=params['probe_size'], theta_st=0, theta_end=params['theta_end'], theta_downsample=params['theta_downsample'], obj_size=params['obj_size'], n_epochs=params['n_epochs'], crit_conv_rate=0.03, max_nepochs=200, alpha_d=params['alpha_d'], alpha_b=params['alpha_b'], gamma=params['gamma'], learning_rate=params['learning_rate'], output_folder=params['output_folder'], minibatch_size=params['batch_size'], save_intermediate=params['save_intermediate'], full_intermediate=params['full_intermediate'], energy_ev=params['energy_ev'], psize_cm=params['psize_cm'], cpu_only=params['cpu_only'], save_path=params['save_folder'], phantom_path=params['phantom_path'], multiscale_level=params['multiscale_level'], n_epoch_final_pass=params['n_epoch_final_pass'], initial_guess=params['initial_guess'], n_batch_per_update=params['n_batch_per_update'], dynamic_rate=True, probe_type=params['probe_type'], probe_initial=None, probe_learning_rate=1e-3, pupil_function=None, probe_circ_mask=None, n_dp_batch=params['n_dp_batch'], finite_support_mask=params['finite_support_mask'], forward_algorithm=params['forward_algorithm'], object_type=params['object_type'], **params['probe_options'])