示例#1
0
def test_deprecated():
    assert_warns_msg(DeprecationWarning, MockClass1, 'Use ``qwerty`` instead')
    assert_warns_msg(DeprecationWarning,
                     MockClass2().mymethod,
                     'since version 0.1, and will be removed in version 0.2')
    assert_warns_msg(DeprecationWarning, MockClass3, 'deprecated')
    assert_warns_msg(DeprecationWarning, mock_function, 'since version 0.4')
示例#2
0
def test_Stimulus__stim():
    stim = Stimulus(3)
    # User could try and motify the data container after the constructor, which
    # would lead to inconsistencies between data, electrodes, time. The new
    # property setting mechanism prevents that.
    # Requires dict:
    with pytest.raises(AttributeError):
        stim._stim = np.array([0, 1])
    # Dict must have all required fields:
    fields = ['data', 'electrodes', 'time']
    for field in fields:
        _fields = deepcopy(fields)
        _fields.remove(field)
        with pytest.raises(AttributeError):
            stim._stim = {f: None for f in _fields}
    # Data must be a 2-D NumPy array:
    data = {f: None for f in fields}
    with pytest.raises(ValueError):
        data['data'] = np.ones(3)
        stim._stim = data
    # Data rows must match electrodes:
    with pytest.raises(ValueError):
        data['data'] = np.ones((3, 4))
        data['time'] = np.arange(4)
        data['electrodes'] = np.arange(2)
        stim._stim = data
    # Data columns must match time:
    with pytest.raises(ValueError):
        data['data'] = np.ones((3, 4))
        data['electrodes'] = np.arange(3)
        data['time'] = np.arange(7)
        stim._stim = data
    # Time points must be unique:
    assert_warns_msg(UserWarning, _unique_timepoints, None, stim, data)
    # But if you do all the things right, you can reset the stimulus by hand:
    data['data'] = np.ones((3, 1))
    data['electrodes'] = np.arange(3)
    data['time'] = None
    stim._stim = data

    data['data'] = np.ones((3, 1))
    data['electrodes'] = np.arange(3)
    data['time'] = np.arange(1)
    stim._stim = data

    data['data'] = np.ones((3, 4))
    data['electrodes'] = np.arange(3)
    data['time'] = np.array([0, 1, 1 + DT, 2])
    stim._stim = data
示例#3
0
def test_ScoreboardModel_predict_percept():
    model = ScoreboardModel(xystep=0.55,
                            rho=100,
                            thresh_percept=0,
                            xrange=(-20, 20),
                            yrange=(-15, 15))
    model.build()
    # Single-electrode stim:
    img_stim = np.zeros(60)
    img_stim[47] = 1
    percept = model.predict_percept(ArgusII(stim=img_stim))
    # Single bright pixel, very small Gaussian kernel:
    npt.assert_equal(np.sum(percept.data > 0.8), 1)
    npt.assert_equal(np.sum(percept.data > 0.5), 2)
    npt.assert_equal(np.sum(percept.data > 0.1), 7)
    npt.assert_equal(np.sum(percept.data > 0.00001), 32)
    # Brightest pixel is in lower right:
    npt.assert_almost_equal(percept.data[33, 46, 0], np.max(percept.data))

    # Full Argus II: 60 bright spots
    model = ScoreboardModel(engine='serial', xystep=0.55, rho=100)
    model.build()
    percept = model.predict_percept(ArgusII(stim=np.ones(60)))
    npt.assert_equal(np.sum(np.isclose(percept.data, 0.8, rtol=0.1, atol=0.1)),
                     88)

    # Model gives same outcome as Spatial:
    spatial = ScoreboardSpatial(engine='serial', xystep=1, rho=100)
    spatial.build()
    spatial_percept = model.predict_percept(ArgusII(stim=np.ones(60)))
    npt.assert_almost_equal(percept.data, spatial_percept.data)
    npt.assert_equal(percept.time, None)

    # Warning for nonzero electrode-retina distances
    implant = ArgusI(stim=np.ones(16), z=10)
    msg = ("Nonzero electrode-retina distances do not have any effect on the "
           "model output.")
    assert_warns_msg(UserWarning, model.predict_percept, msg, implant)
示例#4
0
def test_assert_warns_msg():
    for warning in [UserWarning, DeprecationWarning]:
        assert_warns_msg(warning, _mock_warns, str(warning), category=warning)
示例#5
0
def test_Stimulus():
    # Slots:
    npt.assert_equal(hasattr(Stimulus(1), '__slots__'), True)
    npt.assert_equal(hasattr(Stimulus(1), '__dict__'), False)
    # One electrode:
    stim = Stimulus(3)
    npt.assert_equal(stim.shape, (1, 1))
    npt.assert_equal(stim.electrodes, [0])
    npt.assert_equal(stim.time, None)
    # One electrode with a name:
    stim = Stimulus(3, electrodes='AA001')
    npt.assert_equal(stim.shape, (1, 1))
    npt.assert_equal(stim.electrodes, ['AA001'])
    npt.assert_equal(stim.time, None)
    # Ten electrodes, one will be trimmed:
    stim = Stimulus(np.arange(10), compress=True)
    npt.assert_equal(stim.shape, (9, 1))
    npt.assert_equal(stim.electrodes, np.arange(1, 10))
    npt.assert_equal(stim.time, None)
    # Electrodes + specific time, time will be trimmed:
    stim = Stimulus(np.ones((4, 3)), time=[-3, -2, -1], compress=True)
    npt.assert_equal(stim.shape, (4, 2))
    npt.assert_equal(stim.time, [-3, -1])
    # Electrodes + specific time, but don't trim:
    stim = Stimulus(np.ones((4, 3)), time=[-3, -2, -1], compress=False)
    npt.assert_equal(stim.shape, (4, 3))
    npt.assert_equal(stim.time, [-3, -2, -1])
    # Specific names:
    stim = Stimulus({'A1': 3, 'C5': 8})
    npt.assert_equal(stim.shape, (2, 1))
    npt.assert_equal(np.sort(stim.electrodes), np.sort(['A1', 'C5']))
    npt.assert_equal(stim.time, None)
    # Specific names, renamed:
    stim = Stimulus({'A1': 3, 'C5': 8}, electrodes=['B7', 'B8'])
    npt.assert_equal(stim.shape, (2, 1))
    npt.assert_equal(np.sort(stim.electrodes), np.sort(['B7', 'B8']))
    npt.assert_equal(stim.time, None)
    # Electrodes x time, time will be trimmed:
    stim = Stimulus(np.ones((6, 100)), compress=True)
    npt.assert_equal(stim.shape, (6, 2))
    # Single electrode in time:
    stim = Stimulus([[1, 5, 7, 2, 4]])
    npt.assert_equal(stim.electrodes, [0])
    npt.assert_equal(stim.shape, (1, 5))
    # Specific electrode in time:
    stim = Stimulus({'C3': [[1, 4, 4, 3, 6]]})
    npt.assert_equal(stim.electrodes, ['C3'])
    npt.assert_equal(stim.shape, (1, 5))
    # Multiple specific electrodes in time:
    stim = Stimulus({'C3': [[0, 1, 2, 3]], 'F4': [[4, -1, 4, -1]]})
    # Stimulus from a Stimulus (might happen in ProsthesisSystem):
    stim = Stimulus(Stimulus(4), electrodes='B3')
    npt.assert_equal(stim.shape, (1, 1))
    npt.assert_equal(stim.electrodes, ['B3'])
    npt.assert_equal(stim.time, None)
    # Saves metadata:
    metadata = {'a': 0, 'b': 1}
    stim = Stimulus(3, metadata=metadata)
    npt.assert_equal(stim.metadata['user'], metadata)
    # List of lists instead of 2D NumPy array:
    stim = Stimulus([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]], compress=True)
    npt.assert_equal(stim.shape, (2, 2))
    npt.assert_equal(stim.electrodes, [0, 1])
    npt.assert_equal(stim.time, [0, 4])
    # Tuple of tuples instead of 2D NumPy array:
    stim = Stimulus(((1, 1, 1, 1, 1), (1, 1, 1, 1, 1)), compress=True)
    npt.assert_equal(stim.shape, (2, 2))
    npt.assert_equal(stim.electrodes, [0, 1])
    npt.assert_equal(stim.time, [0, 4])
    # Zero activation:
    source = np.zeros((2, 4))
    stim = Stimulus(source, compress=True)
    npt.assert_equal(stim.shape, (0, 2))
    npt.assert_equal(stim.time, [0, source.shape[1] - 1])
    stim = Stimulus(source, compress=False)
    npt.assert_equal(stim.shape, source.shape)
    npt.assert_equal(stim.time, np.arange(source.shape[1]))
    # Annoying but possible:
    stim = Stimulus([])
    npt.assert_equal(stim.time, None)
    npt.assert_equal(len(stim.data), 0)
    npt.assert_equal(len(stim.electrodes), 0)
    npt.assert_equal(stim.shape, (0, ))

    # Rename electrodes:
    stim = Stimulus(np.ones((2, 5)), compress=True)
    npt.assert_equal(stim.electrodes, [0, 1])
    stim = Stimulus(stim, electrodes=['A3', 'B8'])
    npt.assert_equal(stim.electrodes, ['A3', 'B8'])
    npt.assert_equal(stim.time, [0, 4])

    # Individual stimuli might already have electrode names:
    stim = Stimulus([Stimulus(1, electrodes='B1')])
    npt.assert_equal(stim.electrodes, ['B1'])
    # Duplicate names will be fixed (with a warning message):
    stim = Stimulus([Stimulus(1), Stimulus(2)])
    npt.assert_equal(stim.electrodes, [0, 1])
    # When passing a dict and the stimuli already have electrode names, the
    # keys of the dict prevail:
    stim = Stimulus({'A1': Stimulus(1, electrodes='B2')})
    npt.assert_equal(stim.electrodes, ['A1'])

    # Specify new time points:
    stim = Stimulus(np.ones((2, 5)), compress=True)
    npt.assert_equal(stim.time, [0, 4])
    stim = Stimulus(stim, time=np.array(stim.time) / 10.0)
    npt.assert_equal(stim.electrodes, [0, 1])
    npt.assert_almost_equal(stim.time, [0, 0.4])

    # Charge-balanced:
    npt.assert_equal(Stimulus(0).is_charge_balanced, True)
    npt.assert_equal(Stimulus(1).is_charge_balanced, False)
    npt.assert_equal(Stimulus([0, 0]).is_charge_balanced, True)
    npt.assert_equal(Stimulus([[0, 0]]).is_charge_balanced, True)
    npt.assert_equal(Stimulus([1, -1]).is_charge_balanced, False)
    npt.assert_equal(Stimulus([[1, -1]]).is_charge_balanced, True)
    npt.assert_equal(Stimulus([[1, -1], [0, 0.5]]).is_charge_balanced, False)

    # Not allowed:
    with pytest.raises(ValueError):
        # First one doesn't have time:
        stim = Stimulus({'A2': 1, 'C3': [[1, 2, 3]]})
    with pytest.raises(ValueError):
        # Invalid source type:
        stim = Stimulus(np.ones((3, 4, 5, 6)))
    with pytest.raises(TypeError):
        # Invalid source type:
        stim = Stimulus("invalid")
    with pytest.raises(ValueError):
        # Wrong number of electrodes:
        stim = Stimulus([3, 4], electrodes='A1')
    with pytest.raises(ValueError):
        # Wrong number of time points:
        stim = Stimulus(np.ones((3, 5)), time=[0, 1, 2])
    with pytest.raises(ValueError):
        # Can't force time:
        stim = Stimulus(3, time=[0.4])
    assert_warns_msg(UserWarning,
                     Stimulus,
                     None, [[1, 2, 3]],
                     time=[1, 2, 1.9])
示例#6
0
def test_AxonMapModel_predict_percept(engine):
    model = AxonMapModel(xystep=0.55,
                         axlambda=100,
                         rho=100,
                         thresh_percept=0,
                         engine=engine,
                         xrange=(-20, 20),
                         yrange=(-15, 15),
                         n_axons=500)
    model.build()
    # Single-electrode stim:
    img_stim = np.zeros(60)
    img_stim[47] = 1
    # Axon map jax predict_percept not implemented yet
    if engine == 'jax':
        with pytest.raises(NotImplementedError):
            percept = model.predict_percept(ArgusII(stim=img_stim))
        return
    percept = model.predict_percept(ArgusII(stim=img_stim))
    # Single bright pixel, rest of arc is less bright:
    npt.assert_equal(np.sum(percept.data > 0.8), 1)
    npt.assert_equal(np.sum(percept.data > 0.6), 2)
    npt.assert_equal(np.sum(percept.data > 0.1), 7)
    npt.assert_equal(np.sum(percept.data > 0.0001), 31)
    # Overall only a few bright pixels:
    npt.assert_almost_equal(np.sum(percept.data), 3.3087, decimal=3)
    # Brightest pixel is in lower right:
    npt.assert_almost_equal(percept.data[33, 46, 0], np.max(percept.data))
    # Top half is empty:
    npt.assert_almost_equal(np.sum(percept.data[:27, :, 0]), 0)
    # Same for lower band:
    npt.assert_almost_equal(np.sum(percept.data[39:, :, 0]), 0)

    # Full Argus II with small lambda: 60 bright spots
    model = AxonMapModel(engine='serial',
                         xystep=1,
                         rho=100,
                         axlambda=40,
                         xrange=(-20, 20),
                         yrange=(-15, 15),
                         n_axons=500)
    model.build()
    percept = model.predict_percept(ArgusII(stim=np.ones(60)))
    # Most spots are pretty bright, but there are 2 dimmer ones (due to their
    # location on the retina):
    npt.assert_equal(np.sum(percept.data > 0.5), 28)
    npt.assert_equal(np.sum(percept.data > 0.275), 56)

    # Model gives same outcome as Spatial:
    spatial = AxonMapSpatial(engine='serial',
                             xystep=1,
                             rho=100,
                             axlambda=40,
                             xrange=(-20, 20),
                             yrange=(-15, 15),
                             n_axons=500)
    spatial.build()
    spatial_percept = spatial.predict_percept(ArgusII(stim=np.ones(60)))
    npt.assert_almost_equal(percept.data, spatial_percept.data)
    npt.assert_equal(percept.time, None)

    # Warning for nonzero electrode-retina distances
    implant = ArgusI(stim=np.ones(16), z=10)
    msg = ("Nonzero electrode-retina distances do not have any effect on the "
           "model output.")
    assert_warns_msg(UserWarning, model.predict_percept, msg, implant)