def main(): (raw_data_path, intermediate_data_path, processed_data_path, figure_path) = cf.path_config() (unique_subjects, unique_sessions, unique_reward_codes) = md.extract_subjects_sessions(raw_data_path, reward_task=1) start_time = time.time() trial_end = 2000 for subj_id in unique_subjects: for session_n in unique_sessions: print('z-scoring baseline corrected & lowpass filtered data for subject {}'.format(subj_id) + ' session {}'.format(session_n)) _, _, reward_code = ep.find_data_files(subj_id=subj_id, session_n=session_n, reward_task=1, lum_task=0, raw_data_path=raw_data_path) reward_samples = ep.read_hdf5('samples', subj_id, session_n, processed_data_path, reward_code=reward_code, id_str='corr') reward_messages = ep.read_hdf5('messages', subj_id, session_n, processed_data_path, reward_code=reward_code, id_str='corr') reward_events = ep.read_hdf5('events', subj_id, session_n, processed_data_path, reward_code=reward_code, id_str='corr') reward_samples = z.zscore(reward_samples) plotting_reward_samples = reward_samples.loc[reward_samples.trial_sample <= trial_end] ## TODO: get reasonable y limits for all data within a subject and use that for plotting fig,figname = vz.visualize(plotting_reward_samples.trial_sample, plotting_reward_samples.z_pupil_diameter, subj_id, session_n, reward_code, id_str='zscored') vz.save(fig, figname) hdf = ep.save_hdf5(reward_samples, reward_events, reward_messages, subj_id, session_n, processed_data_path, reward_code=reward_code, id_str='zscored') print('z-scored data saved') end_time = time.time() time_elapsed = end_time - start_time print('time elapsed: ', time_elapsed)
def main(): (raw_data_path, intermediate_data_path, processed_data_path, figure_path) = cf.path_config() (unique_subjects, unique_sessions, unique_reward_codes) = md.extract_subjects_sessions(raw_data_path, reward_task=1) start_time = time.time() for subj_id in unique_subjects: for session_n in unique_sessions: print('bandpass filtering data for subject {}'.format(subj_id) + ' session {}'.format(session_n)) _, _, reward_code = ep.find_data_files(subj_id=subj_id, session_n=session_n, reward_task=1, lum_task=0, raw_data_path=raw_data_path) reward_samples = ep.read_hdf5('samples', subj_id, session_n, processed_data_path, reward_code=reward_code, id_str='clean') reward_messages = ep.read_hdf5('messages', subj_id, session_n, processed_data_path, reward_code=reward_code, id_str='clean') reward_events = ep.read_hdf5('events', subj_id, session_n, processed_data_path, reward_code=reward_code, id_str='clean') reward_samples = bp.high_bandpass_filter(reward_samples) reward_samples = bp.low_bandpass_filter(reward_samples) lp_fig, lp_figname = vz.visualize( reward_samples.trial_sample, reward_samples.lowpass_pupil_diameter, subj_id, session_n, reward_code, id_str='lowpass') vz.save(lp_fig, lp_figname) hp_fig, hp_figname = vz.visualize( reward_samples.trial_sample, reward_samples.highpass_pupil_diameter, subj_id, session_n, reward_code, id_str='highpass') vz.save(hp_fig, hp_figname) hdf = ep.save_hdf5(reward_samples, reward_events, reward_messages, subj_id, session_n, processed_data_path, reward_code=reward_code, id_str='bandpass') end_time = time.time() time_elapsed = end_time - start_time print('time elapsed: ', time_elapsed)