示例#1
0
 def value(self):
     value = self.w.value
     if value == 'Exact':
         return [self.name, self.label, self.w1.value]
     if value == 'Gaussian':
         return puq.NormalParameter(self.name,
                                    self.label,
                                    mean=self.w1.value,
                                    dev=self.w2.value)
     if value == 'Uniform':
         return puq.UniformParameter(self.name,
                                     self.label,
                                     min=self.w1.value,
                                     max=self.w2.value)
     return None
示例#2
0
def run():

    # experimental data for z=Normal(12,2)
    exp_x =np.array([5.04,  5.14,  4.78,  5.12,  5.11,  5.13,  4.97,  5.1 ,  5.53,  5.09])
    exp_y = np.array([3.33,  3.56,  2.94,  3.27,  3.54,  3.4 ,  3.52,  3.63,  3.45,  3.19])
    exp_data = np.array([-26.16, -18.39, -20.57, -45.24, -29.16, -22., -46.47,  -3.15, -10.48, -16.88])

    # measurement error
    sigma = 0.1

    # Create parameters. Pass experimental input data to
    # non-calibration parameters.
    x = puq.NormalParameter('x', 'x', mean=5, dev=0.2, caldata=exp_x)
    y = puq.NormalParameter('y', 'y', mean=3.4, dev=0.25, caldata=exp_y)
    z = puq.UniformParameter('z', 'z', min=5, max=20)

    # set up host, uq and prog normally
    host = puq.InteractiveHost()
    uq = puq.Smolyak([x,y,z], level=2)
    prog = puq.TestProgram('python model_1.py', desc='model_1 calibration')

    # pass experimental results to Sweep
    return puq.Sweep(uq, host, prog, caldata=exp_data, calerr=sigma)
示例#3
0
def model(x, y):
    return y**2 + 17 * x


# The actual values of our parameters
real_y = puq.NormalParameter('y', 'y', mean=5, dev=0.1)
real_x = 0.2

# take some samples, run them through the model
# and add some noise
num_samples = 50
y_data = real_y.pdf.random(num_samples)
y_err = np.ones(len(y_data)) * 0.1  # [0.1, 0.1, 0.1,...]
y_data_noisy = y_data + y_err * np.random.randn(len(y_data))  # simulated noise
y_caldata = np.column_stack((y_data_noisy, y_err))

z_data = model(real_x, y_data)
z_err = np.ones(len(z_data))
z_data_noisy = z_data + z_err * np.random.randn(len(z_data))  # simulated noise

# prior for x. Caltype is 'D' because x is not a stochastic.
x = puq.UniformParameter('x', 'x', min=0, max=10, caltype='D')

# PDF and data for y
y = puq.NormalParameter('y', 'y', mean=5, dev=0.1, caldata=y_caldata)

[calibrated_x, y], kpdf = puq.calibrate([x, y], z_data_noisy, z_err, model)

print(calibrated_x)
示例#4
0
文件: cal_1v3p.py 项目: wang159/puq
def model(x, y, z):
    return x**2 + 0.75 * y**2 + 2 * y + x * y - 7 * z + 2


# experimental data for z=Normal(12,1)
exp_x = np.array([
    5.29, 4.96, 5.3, 5.18, 4.93, 5.11, 4.98, 4.81, 5.27, 4.69, 5.06, 4.99,
    4.87, 5.04, 5.15
])
exp_y = np.array([
    3.51, 3.34, 3.45, 3.26, 3.45, 3.5, 3.37, 3.45, 3.42, 3.4, 3.2, 3.24, 3.39,
    3.35, 3.4
])
exp_data = np.array([
    -18.28, -24.23, -24.5, -24.13, -25.36, -17.2, -16.5, -24.87, -16.25,
    -26.51, -12.3, -15.91, -27.96, -27.98, -34.41
])

# measurement error for exp_data
sigma = 0.1

# Create parameters. Pass experimental input data to
# non-calibration parameters.
x = puq.NormalParameter('x', 'x', mean=5, dev=0.2, caldata=exp_x)
y = puq.NormalParameter('y', 'y', mean=3.4, dev=0.1, caldata=exp_y)
z = puq.UniformParameter('z', 'z', min=5, max=20, caltype='S')

[x, y, calibrated_z], kpdf = puq.calibrate([x, y, z], exp_data, sigma, model)

print "Calibrated z is", calibrated_z
示例#5
0
# our real value of x
real_x = puq.NormalParameter('x', 'x', mean=5, dev=0.1)

# We take 25 samples of x
num_samples = 25
x_data = real_x.pdf.lhs(num_samples)
x_data.sort()  # sort for easier plotting

# compute z using our x samples
z_data = model(x_data)

# add some 'measurement' noise
sigma = 0.1
z_data_noisy = z_data + sigma * np.random.randn(len(z_data))

# prior for x. All we assume is x is between 2 and 25
# caltype is 'S' because we want to calibrate
# mean and deviation of x
x = puq.UniformParameter('x', 'x', min=2, max=25, caltype='S')

# do calibration
[calibrated], kpdf = puq.calibrate([x], z_data_noisy, sigma, model)
print(calibrated)

# plot actual and calibrated
real_x.pdf.plot(color='b')
calibrated.pdf.plot(color='r')
pylab.show()