示例#1
0
    def test_orders(self):
        # the point (0,1) is the identity, and has order 1
        p0 = xform_affine_to_extended((0,1))
        # p0+p0=p0
        # p0+anything=anything

        # The point (0,-1) has order 2
        p2 = xform_affine_to_extended((0,-1))
        p3 = add_elements(p2, p2) # p3=p2+p2=p0
        p4 = add_elements(p3, p2) # p4=p3+p2=p2
        p5 = add_elements(p4, p2) # p5=p4+p2=p0
        self.assertBytesEqual(encodepoint(xform_extended_to_affine(p3)),
                              encodepoint(xform_extended_to_affine(p0)))
        self.assertBytesEqual(encodepoint(xform_extended_to_affine(p4)),
                              encodepoint(xform_extended_to_affine(p2)))
        self.assertBytesEqual(encodepoint(xform_extended_to_affine(p5)),
                              encodepoint(xform_extended_to_affine(p0)))

        # now same thing, but with Element
        p0 = ElementOfUnknownGroup(xform_affine_to_extended((0,1)))
        self.assertElementsEqual(p0, Zero)
        p2 = ElementOfUnknownGroup(xform_affine_to_extended((0,-1)))
        p3 = p2.add(p2)
        p4 = p3.add(p2)
        p5 = p4.add(p2)
        self.assertElementsEqual(p3, p0)
        self.assertElementsEqual(p4, p2)
        self.assertElementsEqual(p5, p0)
        self.assertFalse(isinstance(p3, Element))
        self.assertFalse(isinstance(p4, Element))
        self.assertFalse(isinstance(p5, Element))

        # and again, with .scalarmult instead of .add
        p3 = p2.scalarmult(2) # p3=2*p2=p0
        p4 = p2.scalarmult(3) # p4=3*p2=p2
        p5 = p2.scalarmult(4) # p5=4*p2=p0
        self.assertElementsEqual(p3, p0) # TODO: failing
        self.assertElementsEqual(p4, p2)
        self.assertElementsEqual(p5, p0)
        self.assertFalse(isinstance(p3, Element))
        self.assertFalse(isinstance(p4, Element))
        self.assertFalse(isinstance(p5, Element))
示例#2
0
    def test_orders(self):
        # all points should have an order that's listed in ORDERS. Test some
        # specific points. For low-order points, actually find the complete
        # subgroup and measure its size.

        p = Zero
        values = self.collect(p)
        self.assertEqual(len(values), 1)
        self.assertEqual(values, set([Zero.to_bytes()]))
        self.assertEqual(get_order(p), 1)

        # (0,-1) should be order 2
        p = ElementOfUnknownGroup(xform_affine_to_extended((0,-1)))
        values = self.collect(p)
        self.assertEqual(len(values), 2)
        self.assertEqual(values, set([Zero.to_bytes(), p.to_bytes()]))
        self.assertEqual(get_order(p), 2)

        # (..,26) is in the right group (order L)
        b = b"\x1a" + b"\x00"*31
        p = bytes_to_unknown_group_element(b)
        self.assertEqual(get_order(p), L)

        # (..,35) is maybe order 2*L
        b = b"\x23" + b"\x00"*31
        p = bytes_to_unknown_group_element(b)
        self.assertEqual(get_order(p), 2*L)

        # (..,48) is maybe order 4*L
        b = b"\x30" + b"\x00"*31
        p = bytes_to_unknown_group_element(b)
        self.assertEqual(get_order(p), 4*L)

        # (..,55) is maybe order 8*L
        b = b"\x37" + b"\x00"*31
        p = bytes_to_unknown_group_element(b)
        self.assertEqual(get_order(p), 8*L)
示例#3
0
    def test_orders(self):
        # all points should have an order that's listed in ORDERS. Test some
        # specific points. For low-order points, actually find the complete
        # subgroup and measure its size.

        p = Zero
        values = self.collect(p)
        self.assertEqual(len(values), 1)
        self.assertEqual(values, set([Zero.to_bytes()]))
        self.assertEqual(get_order(p), 1)

        # (0,-1) should be order 2
        p = ElementOfUnknownGroup(xform_affine_to_extended((0, -1)))
        values = self.collect(p)
        self.assertEqual(len(values), 2)
        self.assertEqual(values, set([Zero.to_bytes(), p.to_bytes()]))
        self.assertEqual(get_order(p), 2)

        # (..,26) is in the right group (order L)
        b = b"\x1a" + b"\x00" * 31
        p = bytes_to_unknown_group_element(b)
        self.assertEqual(get_order(p), L)

        # (..,35) is maybe order 2*L
        b = b"\x23" + b"\x00" * 31
        p = bytes_to_unknown_group_element(b)
        self.assertEqual(get_order(p), 2 * L)

        # (..,48) is maybe order 4*L
        b = b"\x30" + b"\x00" * 31
        p = bytes_to_unknown_group_element(b)
        self.assertEqual(get_order(p), 4 * L)

        # (..,55) is maybe order 8*L
        b = b"\x37" + b"\x00" * 31
        p = bytes_to_unknown_group_element(b)
        self.assertEqual(get_order(p), 8 * L)
示例#4
0
    def test_orders(self):
        # the point (0,1) is the identity, and has order 1
        p0 = xform_affine_to_extended((0, 1))
        # p0+p0=p0
        # p0+anything=anything

        # The point (0,-1) has order 2
        p2 = xform_affine_to_extended((0, -1))
        p3 = add_elements(p2, p2)  # p3=p2+p2=p0
        p4 = add_elements(p3, p2)  # p4=p3+p2=p2
        p5 = add_elements(p4, p2)  # p5=p4+p2=p0
        self.assertBytesEqual(
            encodepoint(xform_extended_to_affine(p3)),
            encodepoint(xform_extended_to_affine(p0)),
        )
        self.assertBytesEqual(
            encodepoint(xform_extended_to_affine(p4)),
            encodepoint(xform_extended_to_affine(p2)),
        )
        self.assertBytesEqual(
            encodepoint(xform_extended_to_affine(p5)),
            encodepoint(xform_extended_to_affine(p0)),
        )

        # now same thing, but with Element
        p0 = ElementOfUnknownGroup(xform_affine_to_extended((0, 1)))
        self.assertElementsEqual(p0, Zero)
        p2 = ElementOfUnknownGroup(xform_affine_to_extended((0, -1)))
        p3 = p2.add(p2)
        p4 = p3.add(p2)
        p5 = p4.add(p2)
        self.assertElementsEqual(p3, p0)
        self.assertElementsEqual(p4, p2)
        self.assertElementsEqual(p5, p0)
        self.assertFalse(isinstance(p3, Element))
        self.assertFalse(isinstance(p4, Element))
        self.assertFalse(isinstance(p5, Element))

        # and again, with .scalarmult instead of .add
        p3 = p2.scalarmult(2)  # p3=2*p2=p0
        p4 = p2.scalarmult(3)  # p4=3*p2=p2
        p5 = p2.scalarmult(4)  # p5=4*p2=p0
        self.assertElementsEqual(p3, p0)  # TODO: failing
        self.assertElementsEqual(p4, p2)
        self.assertElementsEqual(p5, p0)
        self.assertFalse(isinstance(p3, Element))
        self.assertFalse(isinstance(p4, Element))
        self.assertFalse(isinstance(p5, Element))