def main():

    rospy.init_node('SVEA_sim_purepursuit')

    # initialize simulated model and control interface
    simple_bicycle_model = SimpleBicycleState(*init_state, dt=dt)
    ctrl_interface = ControlInterface(vehicle_name).start()
    rospy.sleep(0.5)

    # start background simulation thread
    simulator = SimSVEA(vehicle_name, simple_bicycle_model, dt)
    simulator.start()
    rospy.sleep(0.5)

    # log data
    x = []
    y = []
    yaw = []
    v = []
    t = []

    # pure pursuit variables
    lastIndex = len(cx) - 1
    target_ind = pure_pursuit.calc_target_index(simple_bicycle_model, cx, cy)

    # simualtion + animation loop
    time = 0.0
    while lastIndex > target_ind and not rospy.is_shutdown():

        # compute control input via pure pursuit
        steering, target_ind = \
            pure_pursuit.pure_pursuit_control(simple_bicycle_model, cx, cy, target_ind)
        ctrl_interface.send_control(steering, target_speed)

        # log data
        x.append(simple_bicycle_model.x)
        y.append(simple_bicycle_model.y)
        yaw.append(simple_bicycle_model.yaw)
        v.append(simple_bicycle_model.v)
        t.append(time)

        # update for animation
        if show_animation:
            to_plot = (simple_bicycle_model, x, y, steering, target_ind)
            animate_pure_pursuit(*to_plot)
        else:
            rospy.loginfo_throttle(1.5, simple_bicycle_model)

        time += dt

    if show_animation:
        plt.close()
        to_plot = (simple_bicycle_model, x, y, steering, target_ind)
        animate_pure_pursuit(*to_plot)
        plt.show()
    else:
        # just show resulting plot if not animating
        to_plot = (simple_bicycle_model, x, y)
        plot_trajectory(*to_plot)
        plt.show()
示例#2
0
    def track_path(self):
        x = self.x
        y = self.y
        yaw = self.yaw
        v = self.v
        sp = self.spline

        #s = a series of steps of 1 from 0 to the end of the spline
        #Each step is 1 cm
        s = np.arange(0, sp.s[-1], 1)

        #Creates x, y, yaw, and curvature arrays from spline
        cx, cy, cyaw, ck = [], [], [], []
        for i_s in s:
            ix, iy = sp.calc_position(i_s)
            cx.append(ix)
            cy.append(iy)
            cyaw.append(sp.calc_yaw(i_s))
            ck.append(sp.calc_curvature(i_s))

        #Determines initial state of tracker
        state = tracker.State(x, y, yaw, v)

        #Finds end of the spline
        lastIndex = len(cx) - 1

        #Calculates the first target index of the spline
        target_ind = tracker.calc_target_index(state, cx, cy)

        while lastIndex > target_ind:

            #self.target_velocity=self.determine_velocity()

            #Determines new speed of the simulation based on previous speed and target speed
            ai = tracker.PIDControl(self.target_velocity, state.v)

            #Delta and target index
            di, target_ind = tracker.pure_pursuit_control(
                state, cx, cy, target_ind)

            state, yaw_change = tracker.update(state, ai, di)

            self.drive_path(yaw_change)

            #Will eventually be change bc these will be determined by actual position insted of simulated ones
            self.x = cx[lastIndex]
            self.y = cy[lastIndex]
            self.yaw = state.yaw
            self.v = state.v

            if (not self.object_count >= 3):
                self.check_beam()

            if (time.time() - self.start_time > 150):
                self.end_time = True
示例#3
0
    def run(self):
        """ Main loop.  Pure pursuit on the most recently received path. """

        rospy.loginfo("Local planner waiting for odometry")
        while self.odom is None and not rospy.is_shutdown():
            rospy.sleep(.1)
        rospy.loginfo("odometry received")

        rate = rospy.Rate(20)

        # This is the main loop.
        while not rospy.is_shutdown():
            self.path_lock.acquire()
            twist = Twist()

            if self.path is None:  # Bail if there is no path
                self.vel_pub.publish(twist)
                self.path_lock.release()
                rate.sleep()
                continue

            state = self.get_pursuit_state()
            ai = pure_pursuit.PIDControl(self.target_speed, state.v)
            di, self.path_index = pure_pursuit_control(state, self.path_xs,
                                                       self.path_ys,
                                                       self.path_index)
            behind = False
            target = util.pose_transform(self.tf_buffer,
                                         self.path.poses[self.path_index],
                                         'base_link')

            if target.pose.position.x < 0:  # behind the robot!
                behind = True

            goal = self.path.poses[-1]
            dist = np.sqrt((state.x - goal.pose.position.x)**2 +
                           (state.y - goal.pose.position.y)**2)

            if dist < self.goal_threshold:
                twist.linear.x = 0
                # Rotate to the angle of the final pose...
                goal_in_base = util.pose_transform(self.tf_buffer, goal,
                                                   'base_link')
                angle_error = util.yaw_from_pose(goal_in_base.pose)
                twist.angular.z = np.clip(angle_error * 3, -1, 1)

            elif behind or self.blocked:
                twist.linear.x = 0
                twist.angular.z = np.sign(di) * .5

            else:
                twist.linear.x = ai
                wheel_base = self.wheel_base
                omega = di * state.v / wheel_base
                twist.angular.z = omega  # very approximate

            marker = make_sphere_marker(self.path_xs[self.path_index],
                                        self.path_ys[self.path_index], 0.0,
                                        self.path.header)
            self.target_marker_pub.publish(marker)
            self.vel_pub.publish(twist)
            self.path_lock.release()
            rate.sleep()
示例#4
0
def main():
    """
    Initializes parameters for doing donuts.
    Starts instance of ConstraintsInterface and BrakeControl.
    Creates publishers for visualization.
    Starts instance of Geofence.
    Then waits for a pose estimate for the car and geofence/donut center point to be given from rviz.
    Smooth circular or donut path is created.
    Car will start to follow path after start signal is given through /initialpose topic from rviz.
    As soon as the car completes a lap, a new circular path with a shift in starting point is created.
    Pure pursuit control is used for path tracking, PID is used for velocity control.
    Geofence, circular track path and car's tracking path are visualized in rviz.
    """
    rospy.init_node('donuts_node')

    speed_limit, path_radius, geofence_radius, gear, target_laps = init()

    # vehicle name
    # initialize constraints interface
    cont_intf = ConstraintsInterface(vehicle_name, speed_limit).start()
    cont_intf.k_d = 100

    # starts instance of brake control interface.
    brake_controller = BrakeControl(vehicle_name)
    rospy.sleep(2)

    # start publishers
    car_poly_pub = rospy.Publisher("/3D_car", PolygonStamped, queue_size=1)
    pose_pub = rospy.Publisher("/robot_pose", PoseStamped, queue_size=1)
    path_plan_pub = rospy.Publisher("/path_plan", Path, queue_size=1)
    past_path_pub = rospy.Publisher("/past_path", Path, queue_size=1)
    target_pub = rospy.Publisher("/target", PointStamped, queue_size=1)
    rospy.sleep(0.2)

    # start geofence
    geofence = Geofence().start()

    # starting car position subscriber
    car_position = StateSubscriber().start()
    rospy.loginfo('Waiting for initial pose')
    rospy.wait_for_message('/initialpose', PoseWithCovarianceStamped)
    rospy.loginfo('Received initial pose')

    rospy.sleep(1)
    # define the geofence
    geofence.set_center_radius(geofence_radius)

    # create circular path
    cx, cy, cyaw = smooth_donut_path(geofence.center, path_radius)
    publish_path(path_plan_pub, cx, cy)

    # publish the geofence to rviz
    geofence.define_marker()
    geofence.publish_marker()

    # wait for the initial position of the car
    rospy.loginfo('Waiting for start signal')
    rospy.wait_for_message('/clicked_point', PointStamped)
    rospy.loginfo('Received start signal')

    while not car_position.x:
        print('waiting for initial car position')

    # initialize pure pursuit variables
    lastIndex = len(cx) - 1
    # target_ind = pure_pursuit.calc_target_index(car_position, cx, cy)
    target_ind = pure_pursuit.calc_target_index(car_position, cx, cy)

    x = []
    y = []
    yaw = []
    # donut loop
    steering = 0.0
    rate = rospy.Rate(30)
    laps = 0
    while laps < target_laps and not rospy.is_shutdown():
        cx, cy, cyaw = smooth_donut_path(geofence.center, path_radius,
                                         laps * math.pi / 3)
        lastIndex = len(cx) - 1
        target_ind = 0
        while lastIndex > target_ind and not rospy.is_shutdown():
            # compute control input via pure pursuit
            steering, target_ind = \
                pure_pursuit.pure_pursuit_control(car_position, cx, cy, target_ind)
            if geofence.is_outside_geofence(car_position):
                brake_controller.brake_car(steering)
                cont_intf.integral = 0  # reset integrator in PID
            else:
                cont_intf.send_constrained_control(steering, 0, gear, 1, 1)
            # publish stuff for rviz.
            x.append(car_position.x)
            y.append(car_position.y)
            yaw.append(car_position.yaw)
            publish_3Dcar(car_poly_pub, pose_pub, car_position.x,
                          car_position.y, car_position.yaw)
            publish_path(path_plan_pub, cx, cy)
            publish_path(past_path_pub, x, y, yaw)
            publish_target(target_pub, cx[target_ind], cy[target_ind])

            rate.sleep()
        laps = laps + 1
        rospy.loginfo('finished lap')
    if not rospy.is_shutdown():
        rospy.loginfo("Trajectory finished.")
示例#5
0
def train(train_epi, v, rc, it, blender):
    global max_reward

    history = {'episode': [], 'Episode_reward': []}
    #  target course
    cx, cy, cv, cyaw = target_course(v, rc, it)

    T = 3500 / v  # max simulation time 50

    total_episode = 20
    sim_episode = []
    sim_average_reward = []
    sim_a_RL_percentage = []
    sim_d_RL_percentage = []

    for i in range(total_episode):

        # initial state
        state = State(x=-0.0, y=0.0, yaw=0.0, v=0.0)

        lastIndex = len(cx) - 1
        time = 0.0
        sim_t = []
        sim_x = []
        sim_y = []
        sim_yaw = []
        sim_v = []
        sim_a_PID = []
        sim_d_PID = []
        sim_d_pure_pursuit = []
        sim_a_final = []
        sim_d_final = []
        sim_a_RL = []
        sim_d_RL = []
        sim_a_RL_correction = []
        sim_d_RL_correction = []
        sim_a_RL_or_not = []
        sim_d_RL_or_not = []
        sim_reward = []
        sim_target_dis = []
        sim_target_angle = []
        d_PID = 0
        a_final = 0
        d_final = 0
        target_speed = cv[0]

        # observation = np.array([target_dis, target_angle, target_speed, state.v, a_final, d_final])

        target_ind = calc_target_index(state, cx, cy, 1)
        target_dis, target_angle = target_dis_dir(state.x, state.y, state.yaw,
                                                  cx[target_ind],
                                                  cy[target_ind])

        # observation = np.array([target_dis, target_angle, target_speed, state.v, a_final, d_final])
        # observation = np.array([target_angle])
        observation = np.array([target_angle, target_speed])
        # print(observation)
        states, actions, rewards = [], [], []
        episode_reward = 0
        j = 0

        while T >= time and lastIndex > target_ind:
            # print('observation',observation)

            target_speed = cv[target_ind]

            # a_PID = a_PIDControl(target_speed, state.vx)
            a_PID = a_PIDControl(target_speed, state.v)
            # print(target_speed, state.v)
            # if abs(a_PID) > 5:
            #     a_PID = np.sign(a_PID)*5

            # a_PID = PIDControl(target_speed, state.v)
            d_pure_pursuit, target_ind = pure_pursuit_control(
                state, cx, cy, target_ind, 0)
            # print(d_pure_pursuit)
            d_PID = d_PIDControl(target_angle, d_PID)
            # print(target_angle)

            action_RL = model.choose_action(observation)
            # print(observation, action_RL)
            a_RL = 0  # acceleration
            d_RL = action_RL[0]  # delta_steer
            if math.isnan(d_RL):
                # print('observation',observation)
                # print('d_RL is none')
                d_RL = 0
                j = 999999999
                break
                # continue
            # print('d_RL',d_RL)

            # Control command mechanism selection
            # switch
            # a_final, d_final, a_RL_or_not, d_RL_or_not = control_switch(a_PID, d_pure_pursuit, a_RL, d_RL)
            # adjust
            # a_final, d_final = control_blender(a_PID, d_pure_pursuit, a_RL, d_RL)
            # pure ppo
            # a_final, d_final = a_RL, d_RL
            # pure conventional
            # a_final, d_final = a_PID, d_pure_pursuit
            # a_final, d_final, a_RL_correction, d_RL_correction = control_blender(a_PID, d_PID, a_RL, d_RL)
            a_final, d_final, a_RL_correction, d_RL_correction = control_blender(
                a_PID, d_pure_pursuit, a_RL, d_RL, blender)

            # state = update(state, a_final, d_final)
            # state = update_cv(state, target_speed, d_final)
            state = dynamic_update_cv(state, target_speed, d_final)
            # state = update(state, a_RL, d_RL)
            # state = kinematic_update(state, a_final, d_final)
            # state = dynamic_update(state, a_PID, d_pure_pursuit)
            # state = dynamic_update(state, a_final, d_final)

            target_dis, target_angle = target_dis_dir(state.x, state.y,
                                                      state.yaw,
                                                      cx[target_ind],
                                                      cy[target_ind])
            # print('target_dis, target_angle',target_dis, target_angle)

            # next_observation = np.array([target_dis/50, target_angle, target_speed/50, state.v/50, a_final/10, d_final/20])
            next_observation = np.array([target_angle, target_speed])
            reward = reward_function(state, cx, cy, a_PID, d_pure_pursuit,
                                     a_RL, d_RL, target_dis, target_angle,
                                     target_speed, state.v)
            episode_reward += reward

            states.append(observation)
            actions.append(action_RL)
            rewards.append(reward)

            observation = next_observation
            # print(observation)

            sim_t.append(time)
            sim_x.append(state.x)
            sim_y.append(state.y)
            sim_yaw.append(state.yaw)
            sim_v.append(state.v)
            sim_a_PID.append(a_PID)
            sim_d_PID.append(d_PID)
            sim_d_pure_pursuit.append(d_pure_pursuit)
            sim_a_RL.append(a_RL)
            sim_d_RL.append(d_RL)
            sim_a_RL_correction.append(a_RL_correction)
            sim_d_RL_correction.append(d_RL_correction)
            sim_a_final.append(a_final)
            sim_d_final.append(d_final)
            sim_target_dis.append(target_dis)
            sim_target_angle.append(target_angle)
            # sim_a_RL_or_not.append(a_RL_or_not)
            # sim_d_RL_or_not.append(d_RL_or_not)
            sim_reward.append(reward)
            # show_step_animation(cx, cy, sim_x, sim_y, sim_yaw, state.x, state.y, state.yaw, state.v, target_ind)
            # w = model.get_weights(i)

            if (j + 1) % model.batch == 0:
                states = np.array(states)
                actions = np.array(actions)
                rewards = np.array(rewards)
                d_reward = model.discount_reward(states, rewards,
                                                 next_observation)
                # d_reward = [reward]
                # print('states',states,'actions',actions,'rewards',rewards)
                # print(d_reward)

                model.update(states, actions, d_reward, j)
                # w = model.get_weights(i)

                states, actions, rewards = [], [], []

            j += 1
            time = time + dt

        # print(len(sim_d_RL_or_not))
        average_reward = episode_reward / j
        sim_episode.append(i)
        sim_average_reward.append(average_reward)
        # sim_a_RL_percentage.append(np.sum(sim_a_RL_or_not)/len(sim_a_RL_or_not)*100)
        # sim_d_RL_percentage.append(np.sum(sim_d_RL_or_not)/len(sim_d_RL_or_not)*100)

        # history['episode'].append(i)
        # history['Episode_reward'].append(episode_reward)
        # print('Episode: {} | Episode reward: {:.2f}'.format(i, average_reward))
        # model.save_history(history, 'ppo2.csv')

        # w = model.get_weights(i)
        # print(w)

        if train_epi == 0:
            if i == 0:
                max_reward = average_reward
                print('max_reward:', round(max_reward, 2))
                save_io = 0
                # save_plot(i,average_reward)
                save_sim(i,average_reward,cx, cy, cv, sim_t, sim_x, sim_y, sim_yaw, sim_v, \
                sim_a_PID, sim_d_PID, sim_d_pure_pursuit, sim_a_RL, sim_d_RL, sim_a_final, sim_d_final, \
                sim_reward, sim_episode, sim_average_reward, \
                sim_a_RL_correction, sim_d_RL_correction, sim_target_dis, sim_target_angle)
                show_episode_plot(cx, cy, cv, sim_t, sim_x, sim_y, sim_yaw, sim_v, \
                sim_a_PID, sim_d_PID, sim_d_pure_pursuit, sim_a_RL, sim_d_RL, sim_a_final, sim_d_final, \
                sim_reward, sim_episode, sim_average_reward, sim_a_RL_or_not, sim_d_RL_or_not, sim_a_RL_percentage, sim_d_RL_percentage, \
                sim_a_RL_correction, sim_d_RL_correction, sim_target_dis, sim_target_angle)
                plot_action(model, save_io, i, average_reward, target_speed)
                strategy_3d_map(model)
            if average_reward > max_reward:
                save_io = 1
                max_reward = average_reward
                print('Better! Save Model! max_reward:', round(max_reward, 2))
                model.save_learning()
                show_episode_plot(cx, cy, cv, sim_t, sim_x, sim_y, sim_yaw, sim_v, \
                sim_a_PID, sim_d_PID, sim_d_pure_pursuit, sim_a_RL, sim_d_RL, sim_a_final, sim_d_final, \
                sim_reward, sim_episode, sim_average_reward, sim_a_RL_or_not, sim_d_RL_or_not, sim_a_RL_percentage, sim_d_RL_percentage, \
                sim_a_RL_correction, sim_d_RL_correction, sim_target_dis, sim_target_angle)
                plot_action(model, save_io, i, average_reward, target_speed)
                strategy_3d_map(model)
        else:
            if average_reward > max_reward:
                save_io = 1
                max_reward = average_reward
                print('Better! Save Model! max_reward:', round(max_reward, 2))
                # print('Better! Save Model!')
                model.save_learning()
                # save_plot(i,average_reward)
                save_sim(i,average_reward,cx, cy, cv, sim_t, sim_x, sim_y, sim_yaw, sim_v, \
                sim_a_PID, sim_d_PID, sim_d_pure_pursuit, sim_a_RL, sim_d_RL, sim_a_final, sim_d_final, \
                sim_reward, sim_episode, sim_average_reward, \
                sim_a_RL_correction, sim_d_RL_correction, sim_target_dis, sim_target_angle)
                show_episode_plot(cx, cy, cv, sim_t, sim_x, sim_y, sim_yaw, sim_v, \
                sim_a_PID, sim_d_PID, sim_d_pure_pursuit, sim_a_RL, sim_d_RL, sim_a_final, sim_d_final, \
                sim_reward, sim_episode, sim_average_reward, sim_a_RL_or_not, sim_d_RL_or_not, sim_a_RL_percentage, sim_d_RL_percentage, \
                sim_a_RL_correction, sim_d_RL_correction, sim_target_dis, sim_target_angle)
                plot_action(model, save_io, i, average_reward, target_speed)
                strategy_3d_map(model)
            else:
                save_io = 0
def main():
    """
    Initializes parameters for pure pursuit.
    Starts instance of ConstraintsInterface and BrakeControl.
    Starts instance of StateSubscriber.
    Creates publishers for visualization.
    Then waits for a pose estimate for the car to be given.
    Car will start to follow path after start signal is given,
    which is done by publishing to the /clicked_point topic.
    """
    global short_look_ahead, long_look_ahead
    rospy.init_node('floor2_pure_pursuit')
    vehicle_name = "SVEA3"

    target_speed, cx, cy, gear, long_look_ahead, short_look_ahead = init()

    final_point = (-8.45582103729, -5.04866838455)
    cx.append(final_point[0])
    cy.append(final_point[1])

    cont_intf = ConstraintsInterface(vehicle_name, target_speed).start()
    cont_intf.k_d = 100

    while not cont_intf.is_ready and not rospy.is_shutdown():
        rospy.sleep(0.1)

    # start emergency brake node
    brake_controller = BrakeControl(vehicle_name)

    # start car position and velocity subscriber
    car_state = StateSubscriber().start()

    car_poly_pub = rospy.Publisher("/3D_car", PolygonStamped, queue_size=1)
    pose_pub = rospy.Publisher("/robot_pose", PoseStamped, queue_size=1)
    path_plan_pub = rospy.Publisher("/path_plan", Path, queue_size=1)
    past_path_pub = rospy.Publisher("/past_path", Path, queue_size=1)
    target_pub = rospy.Publisher("/target", PointStamped, queue_size=1)
    rospy.sleep(3)

    print('Waiting for initial pose')
    rospy.wait_for_message('/initialpose', PoseWithCovarianceStamped)
    print('Received initial pose')
    publish_path(path_plan_pub, cx, cy)
    print('Waiting for start signal')
    rospy.wait_for_message('/clicked_point', PointStamped)
    print('Received start signal')

    while not car_state.x:
        print('waiting for initial car position')

    # PURE PURSUIT PARAMS ########################################################
    pure_pursuit.k = 0.1  # look forward gain
    pure_pursuit.Lfc = long_look_ahead  # look-ahead distance
    pure_pursuit.L = 0.324  # [m] wheel base of vehicle
    ###############################################################################

    lastIndex = len(cx) - 2
    target_ind = pure_pursuit.calc_target_index(car_state, cx, cy)

    x = []
    y = []
    yaw = []

    # pure pursuit loop
    # follow path until second to last index.
    steering = 0.0
    rate = rospy.Rate(30)
    cont_intf.send_control(steering, 0, 0, gear)  # send low gear

    while lastIndex > target_ind and not rospy.is_shutdown():

        pure_pursuit.Lfc = calc_look_ahead(car_state)

        # compute control input via pure pursuit
        steering, target_ind = \
            pure_pursuit.pure_pursuit_control(car_state, cx, cy, target_ind)

        if not brake_controller.is_emergency:
            cont_intf.send_constrained_control(
                steering,
                0,  # zero brake force
                gear)  # send low gear
        else:
            brake_controller.brake_car(steering)

        # publish car, path and target index for rviz
        x.append(car_state.x)
        y.append(car_state.y)
        yaw.append(car_state.yaw)
        publish_3Dcar(car_poly_pub, pose_pub, car_state.x, car_state.y,
                      car_state.yaw)
        publish_path(path_plan_pub, cx, cy)
        publish_path(past_path_pub, x, y, yaw)
        publish_target(target_pub, cx[target_ind], cy[target_ind])
        rate.sleep()

    # create a straight path for points inbetween the last two points

    # points to project goal onto
    p1 = (-2.33859300613, 3.73132610321)
    p2 = (-2.86509466171, 3.14682602882)
    line = (p2[0] - p1[0], p2[1] - p1[1])
    proj_p2 = np.dot(p2, line)
    cx = cx[:-1]
    cy = cy[:-1]
    new_x = np.linspace(cx[-1], final_point[0], 50)
    new_y = np.linspace(cy[-1], final_point[1], 50)
    cx.extend(new_x)
    cy.extend(new_y)

    # continue following final point until goal is reached.
    while not rospy.is_shutdown():
        steering, target_ind = \
            pure_pursuit.pure_pursuit_control(car_state, cx, cy, target_ind)

        # calculate car projection on line
        proj_car = np.dot((car_state.x, car_state.y), line)
        if brake_controller.is_emergency:
            brake_controller.brake_car(steering)
        elif proj_car < proj_p2:
            cont_intf.send_constrained_control(steering, 0, gear)
        else:
            # brake if goal is reached.
            brake_controller.brake_car(steering)
            rospy.sleep(0.1)
            break

        # update visualizations
        x.append(car_state.x)
        y.append(car_state.y)
        yaw.append(car_state.yaw)
        publish_3Dcar(car_poly_pub, pose_pub, car_state.x, car_state.y,
                      car_state.yaw)
        publish_path(path_plan_pub, cx, cy)
        publish_path(past_path_pub, x, y, yaw)
        publish_target(target_pub, cx[target_ind], cy[target_ind])

        rate.sleep()

    if not rospy.is_shutdown():
        rospy.loginfo("Trajectory finished.")

    while brake_controller.is_emergency:
        brake_controller.brake_car(steering)

    rospy.spin()
示例#7
0
    def waypoints_callback(self, msg):
        """
        Waypoints callback does way too much right now. All of the path stuff should be handled in a helper method
        """

        google_points = []

        #Reads each point in the waypoint topic into google_points
        for gps_point in msg.waypoints:
            point = gps_util.get_point(gps_point)
            google_points.append(point)

        print len(google_points)

        #Adds more points between the google points
        google_points_plus = gps_util.add_intermediate_points(
            google_points, 15.0)
        print len(google_points_plus)

        ax = []
        ay = []

        extra_points = Path()
        extra_points.header = Header()
        extra_points.header.frame_id = '/map'

        #Puts the x's and y's
        for p in google_points_plus:
            extra_points.poses.append(self.create_poseStamped(p))
            ax.append(p.x)
            ay.append(p.y)

        self.points_pub.publish(extra_points)

        #calculate the spline
        cx, cy, cyaw, ck, s = cubic_spline_planner.calc_spline_course(ax,
                                                                      ay,
                                                                      ds=0.1)

        path = Path()
        path.header = Header()
        path.header.frame_id = '/map'

        for i in range(0, len(cx)):
            curve_point = Point()
            curve_point.x = cx[i]
            curve_point.y = cy[i]
            path.poses.append(self.create_poseStamped(curve_point))

        self.path_pub.publish(path)

        #================================================ pure persuit copy/pase ===============================================

        k = 0.1  # look forward gain
        Lfc = 3.5  # look-ahead distance
        Kp = 1.0  # speed propotional gain
        dt = 0.1  # [s]
        L = 2.9  # [m] wheel base of vehicle

        target_speed = 10.0 / 3.6  # [m/s]
        T = 100.0  # max simulation time

        # initial state
        pose = self.odom.pose.pose
        twist = self.odom.twist.twist

        quat = (pose.orientation.x, pose.orientation.y, pose.orientation.z,
                pose.orientation.w)
        angles = tf.euler_from_quaternion(quat)
        initial_v = math.sqrt(twist.linear.x**2 + twist.linear.y**2)
        state = State(x=pose.position.x,
                      y=pose.position.y,
                      yaw=angles[2],
                      v=initial_v)  #TODO this has to be where we start

        lastIndex = len(cx) - 1
        time = 0.0
        x = [state.x]
        y = [state.y]
        yaw = [state.yaw]
        v = [state.v]
        t = [0.0]
        target_ind = pure_pursuit.calc_target_index(state, cx, cy)

        while lastIndex > target_ind:
            ai = pure_pursuit.PIDControl(target_speed, state.v)
            di, target_ind = pure_pursuit.pure_pursuit_control(
                state, cx, cy, target_ind)

            #publish where we want to be
            mkr = self.create_marker(cx[target_ind], cy[target_ind], '/map')
            self.target_pub.publish(mkr)

            #publish an arrow with our twist
            arrow = self.create_marker(0, 0, '/base_link')
            arrow.type = 0  #arrow
            arrow.scale.x = 2.0
            arrow.scale.y = 1.0
            arrow.scale.z = 1.0
            arrow.color.r = 1.0
            arrow.color.g = 0.0
            arrow.color.b = 0.0
            #TODO di might be in radians so that might be causing the error
            quater = tf.quaternion_from_euler(0, 0, di)
            arrow.pose.orientation.x = quater[0]
            arrow.pose.orientation.y = quater[1]
            arrow.pose.orientation.z = quater[2]
            arrow.pose.orientation.w = quater[3]
            self.target_twist_pub.publish(arrow)

            #go back to pure persuit
            state = self.update(state, ai, di)

            #time = time + dt

            x.append(state.x)
            y.append(state.y)
            yaw.append(state.yaw)
            v.append(state.v)
            t.append(time)

        # Test
        assert lastIndex >= target_ind, "Cannot goal"

        rospy.logerr("Done navigating")
        msg = VelAngle()
        msg.vel = 0
        msg.angle = 0
        msg.vel_curr = 0
        self.motion_pub.publish(msg)
示例#8
0
            
            if (previous_state not in [3,5,6,7]):
                previous_state = state
                AUTO_enter_timer.reset()
            if rp.use_AUTO:
                if not AUTO_enter_timer.check():
                    print "waiting before entering AUTO mode..."
                    steer_cmd_pub.publish(std_msgs.msg.Int32(49))
                    motor_cmd_pub.publish(std_msgs.msg.Int32(49))
                    time.sleep(0.1)
                    continue
                else:
                 
                    state = State(gps2x(GPS2_long), gps2y(GPS2_lat), gps2yaw(GPS2_angle), gps2v(GPS2_speed))
                    AUTO_motor = pid_control(target_speed, gps2v(GPS2_speed))
                    AUTO_steer = pure_pursuit_control(state, cx, cy, target_ind)
                    di, target_ind = pure_pursuit_control(state, cx, cy, target_ind)
            
                    if AUTO_motor > rp.motor_freeze_threshold \
                    and np.array(encoder_list[0:3]).mean() > 1 \
                    and np.array(encoder_list[-3:]).mean()<0.2 \
                    and state_transition_time_s > 1:
                        freeze = True

                    if lastIndex >= target_ind:
                        print(Goal!)
                        freeze = True

                    # avoid experiment too long
                    if finish_test_timer.check():
                        freeze = True
示例#9
0
def main():
    """
    Initializes the parameters from the launch file.
    Creates circular path.
    Starts the instances of SimpleBicycleState, ControlInterface and SimSVEA.
    Creates publishers for visualization.
    Pure pursuit is used for path tracking. PID is used for limiting velocity.
    """
    rospy.init_node('floor2_example')
    start_pt, use_rviz, use_matplotlib, cx, cy = init()

    # initialize simulated model and control interface
    simple_bicycle_model = SimpleBicycleState(*start_pt, dt=dt)
    ctrl_interface = ControlInterface(vehicle_name).start()
    rospy.sleep(0.2)

    # start background simulation thread
    simulator = SimSVEA(vehicle_name, simple_bicycle_model, dt)
    simulator.start()

    car_poly_pub = rospy.Publisher("/3D_car", PolygonStamped, queue_size=1)
    pose_pub = rospy.Publisher("/robot_pose", PoseStamped, queue_size=1)
    path_plan_pub = rospy.Publisher("/path_plan", Path, queue_size=1)
    past_path_pub = rospy.Publisher("/past_path", Path, queue_size=1)
    target_pub = rospy.Publisher("/target", PointStamped, queue_size=1)
    rospy.sleep(0.2)

    # log data
    x = []
    y = []
    yaw = []
    v = []
    t = []

    # initialize pure pursuit variables
    lastIndex = len(cx) - 1
    target_ind = pure_pursuit.calc_target_index(simple_bicycle_model, cx, cy)
    print(target_ind)
    # simualtion + animation loop
    time = 0.0
    steering = 0.0
    while lastIndex > target_ind and not rospy.is_shutdown():

        # compute control input via pure pursuit
        steering, target_ind = \
            pure_pursuit.pure_pursuit_control(simple_bicycle_model, cx, cy, target_ind)
        ctrl_interface.send_control(steering, target_speed)

        # log data; mostly used for visualization
        x.append(simple_bicycle_model.x)
        y.append(simple_bicycle_model.y)
        yaw.append(simple_bicycle_model.yaw)
        v.append(simple_bicycle_model.v)
        t.append(time)

        # update visualizations
        if use_rviz:
            publish_3Dcar(car_poly_pub, pose_pub, simple_bicycle_model.x,
                          simple_bicycle_model.y, simple_bicycle_model.yaw)
            publish_path(path_plan_pub, cx, cy)
            publish_path(past_path_pub, x, y, yaw)
            publish_target(target_pub, cx[target_ind], cy[target_ind])
        if use_matplotlib:
            to_plot = (simple_bicycle_model, x, y, steering, target_ind)
            animate_pure_pursuit(*to_plot)
        if not (use_rviz or use_matplotlib):
            rospy.loginfo_throttle(1.5, simple_bicycle_model)

        time += dt

    if not rospy.is_shutdown():
        rospy.loginfo("Trajectory finished.")

    if use_matplotlib:
        plt.close()
        to_plot = (simple_bicycle_model, x, y, steering, target_ind)
        animate_pure_pursuit(*to_plot)
        plt.show()
示例#10
0
    def track_path(self):
        x = self.x
        y = self.y
        yaw = self.yaw
        v = self.v
        sp = self.spline

        #s = a series of steps of 1 from 0 to the end of the spline
        #Each step is 1 cm
        s = np.arange(0, sp.s[-1], 1)

        #Creates x, y, yaw, and curvature arrays from spline
        cx, cy, cyaw, ck = [], [], [], []
        for i_s in s:
            ix, iy = sp.calc_position(i_s)
            cx.append(ix)
            cy.append(iy)
            cyaw.append(sp.calc_yaw(i_s) * 180 / (math.pi))
            ck.append(sp.calc_curvature(i_s))

        #Determines initial state of tracker
        state = tracker.State(x, y, yaw, v)

        #Finds end of the spline
        lastIndex = len(cx) - 1

        #Calculates the first target index of the spline
        target_ind = tracker.calc_target_index(state, cx, cy, 0)

        while lastIndex > target_ind:

            #self.target_velocity=self.determine_velocity()

            #Determines new speed of the simulation based on previous speed and target speed
            #ai = tracker.PIDControl(self.target_velocity, state.v)

            #Delta and target index
            #di, target_ind = tracker.pure_pursuit_control(state, cx, cy, target_ind)
            target_ind = tracker.pure_pursuit_control(state, cx, cy,
                                                      target_ind)

            #state, yaw_change = tracker.update(state, ai, di)
            yaw_change = cyaw[target_ind] - pose[2]
            print("Yaw Index: " + str(target_ind))
            print("Next: " + str(cyaw[target_ind]) + "      Current: " +
                  str(pose[2]))
            print("So change is " + str(yaw_change))
            print(
                "--------------------------------------------------------------------------------"
            )
            state.x = pose[0]
            state.y = pose[1]
            state.yaw = pose[2]
            state.v = self.v

            #print(str(yaw_change))
            self.drive_path(yaw_change)
            time.sleep(0.15)  #no greater than 0.15

            v = self.calculate_velocity(self.x, pose[0], self.y, pose[1])

            if (v == 0):
                v = self.v

            self.v = v

            self.x = pose[0]
            self.y = pose[1]
            self.yaw = pose[2]

            #print("V: "+str(self.v))

            #with open("data.txt","a") as file:
            #    file.write("X: " + str(self.x) + ",   Y: " + str(self.y) + ",  Yaw: " + str(self.yaw) + ",    V: " + str(self.v) + "\n")

            if (not self.object_count >= 3):
                self.check_beam()

            if (time.time() - self.start_time > 20):
                self.end_time = True
示例#11
0
    def create_path(self):
        # Increase the "resolution" of the path with 15 intermediate points
        local_points_plus = self.local_points  # geometry_util.add_intermediate_points(self.local_points, 15.0)

        ax = []
        ay = []

        # Create a Path object for displaying the raw path (no spline) in RViz
        display_points = Path()
        display_points.header = Header()
        display_points.header.frame_id = '/map'

        # Set the beginning of the navigation the first point
        last_index = 0
        target_ind = 0

        # Creates a list of the x's and y's to be used when calculating the spline
        for p in local_points_plus:
            display_points.poses.append(create_pose_stamped(p))
            ax.append(p.x)
            ay.append(p.y)

        self.points_pub.publish(display_points)

        # If the path doesn't have any successive points to navigate through, don't try
        if len(ax) > 2:
            # Create a cubic spline from the raw path
            cx, cy, cyaw, ck, cs = cubic_spline_planner.calc_spline_course(
                ax, ay, ds=0.1)

            # Create Path object which displays the cubic spline in RViz
            path = Path()
            path.header = Header()
            path.header.frame_id = '/map'

            # Add cubic spline points to path
            for i in range(0, len(cx)):
                curve_point = Point()
                curve_point.x = cx[i]
                curve_point.y = cy[i]
                path.poses.append(create_pose_stamped(curve_point))

            self.path_pub.publish(path)

            # Set the current state of the cart to navigating
            self.current_state = VehicleState()
            self.current_state.is_navigating = True
            self.vehicle_state_pub.publish(self.current_state)

            target_speed = self.global_speed

            # initial state
            pose = self.global_pose
            twist = self.global_twist

            quat = (pose.orientation.x, pose.orientation.y, pose.orientation.z,
                    pose.orientation.w)
            angles = tf.euler_from_quaternion(quat)
            initial_v = twist.linear.x
            #TODO state has to be where we start
            state = State(x=pose.position.x,
                          y=pose.position.y,
                          yaw=angles[2],
                          v=initial_v)

            # last_index represents the last point in the cubic spline, the destination
            last_index = len(cx) - 1
            time = 0.0
            x = [state.x]
            y = [state.y]
            yaw = [state.yaw]
            v = [state.v]
            t = [0.0]
            target_ind = pure_pursuit.calc_target_index(state, cx, cy, 0)

            # Publish the ETA to the destination before we get started
            self.calc_eta(None)

            # Continue to loop while we have not hit the target destination, and the path is still valid
            while last_index > target_ind and self.path_valid and not rospy.is_shutdown(
            ):
                target_speed = self.global_speed
                ai = target_speed  #pure_pursuit.PIDControl(target_speed, state.v)
                di, target_ind = pure_pursuit.pure_pursuit_control(
                    state, cx, cy, target_ind)

                #publish our desired position
                mkr = create_marker(cx[target_ind], cy[target_ind], '/map')
                self.target_pub.publish(mkr)

                # Arrow that represents steering angle
                arrow = create_marker(0, 0, '/base_link')
                arrow.type = 0  #arrow
                arrow.scale.x = 2.0
                arrow.scale.y = 1.0
                arrow.scale.z = 1.0
                arrow.color.r = 1.0
                arrow.color.g = 0.0
                arrow.color.b = 0.0

                quater = tf.quaternion_from_euler(0, 0, di)
                arrow.pose.orientation.x = quater[0]
                arrow.pose.orientation.y = quater[1]
                arrow.pose.orientation.z = quater[2]
                arrow.pose.orientation.w = quater[3]
                self.target_twist_pub.publish(arrow)

                state = self.update(state, ai, di)

                x.append(state.x)
                y.append(state.y)
                yaw.append(state.yaw)
                v.append(state.v)
                t.append(time)
        else:
            self.path_valid = False
            rospy.logwarn("It appears the cart is already at the destination")

        #Check if we've reached the destination, if so we should change the cart state to finished
        rospy.loginfo("Done navigating")
        self.current_state = VehicleState()
        self.current_state.is_navigating = False
        self.current_state.reached_destination = True
        notify_server = String()

        # Let operator know why current path has stopped
        if self.path_valid:
            rospy.loginfo(
                "Reached Destination succesfully without interruption")
            self.arrived_pub.publish(notify_server)
        else:
            rospy.loginfo(
                "Already at destination, or there may be no path to get to the destination or navigation was interrupted."
            )

        # Update the internal state of the vehicle
        self.vehicle_state_pub.publish(self.current_state)
        msg = VelAngle()
        msg.vel = 0
        msg.angle = 0
        msg.vel_curr = 0
        self.motion_pub.publish(msg)
示例#12
0
def main():

    rospy.init_node('SVEA_sim_multi')

    # initialize simulated model and control interface
    simple_bicycle_model0 = SimpleBicycleState(*init_state0, dt=dt)
    ctrl_interface0 = ControlInterface(vehicle_name0).start()

    simple_bicycle_model1 = SimpleBicycleState(*init_state1, dt=dt)
    ctrl_interface1 = ControlInterface(vehicle_name1).start()

    rospy.sleep(0.5)

    # start background simulation thread
    sim_car0 = SimSVEA(vehicle_name0, simple_bicycle_model0, dt)
    sim_car1 = SimSVEA(vehicle_name1, simple_bicycle_model1, dt)

    sim_car0.start()
    sim_car1.start()

    rospy.sleep(0.5)

    # log data
    log0 = {"x": [], "y": [], "yaw": [], "v": [], "t": []}
    log1 = {"x": [], "y": [], "yaw": [], "v": [], "t": []}

    # pure pursuit variables
    lastIndex = len(cx) - 1
    target_ind0 = pure_pursuit.calc_target_index(simple_bicycle_model0, cx, cy)
    target_ind1 = pure_pursuit.calc_target_index(simple_bicycle_model1, cx, cy)

    # simualtion + animation loop
    time = 0.0
    while lastIndex > target_ind0 and not rospy.is_shutdown():

        # compute control input via pure pursuit
        steering0, target_ind0 = \
            pure_pursuit.pure_pursuit_control(simple_bicycle_model0, cx, cy, target_ind0)
        ctrl_interface0.send_control(steering0, target_speed)

        steering1, target_ind1 = \
            pure_pursuit.pure_pursuit_control(simple_bicycle_model1, cx, cy, target_ind1)
        ctrl_interface1.send_control(steering1, target_speed)

        # log data
        log0 = log_data(log0, simple_bicycle_model0, time)
        log1 = log_data(log1, simple_bicycle_model1, time)

        # update for animation
        if show_animation:
            to_plot0 = (simple_bicycle_model0,
                        log0["x"], log0["y"],
                        steering0, vehicle_color0,
                        target_ind0)
            to_plot1 = (simple_bicycle_model1,
                        log1["x"], log1["y"],
                        steering1, vehicle_color1,
                        target_ind1)

            animate_multi([to_plot0, to_plot1])
        else:
            rospy.loginfo_throttle(1.5, simple_bicycle_model0)
            rospy.loginfo_throttle(1.5, simple_bicycle_model1)

        time += dt

    if show_animation:
        plt.close()
        to_plot0 = (simple_bicycle_model0,
                    log0["x"], log0["y"],
                    steering0, vehicle_color0,
                    target_ind0)
        to_plot1 = (simple_bicycle_model1,
                    log1["x"], log1["y"],
                    steering1, vehicle_color1,
                    target_ind1)
        animate_multi([to_plot0, to_plot1])
        plt.show()
    else:
        # just show resulting plot if not animating
        to_plot0 = (simple_bicycle_model0,
                    log0["x"], log0["y"],
                    vehicle_color0)
        to_plot1 = (simple_bicycle_model1,
                    log1["x"], log1["y"],
                    vehicle_color1)
        plot_trajectory(*to_plot0)
        plot_trajectory(*to_plot1)
        plt.show()