fp_csv_metrics) if individualImages: if kpiimage != "None" and kpiimage != "" and kpiimage != "plot": if not (os.path.exists(outputDir)): os.makedirs(outputDir) SaveScreenshot(outputDir + "/out_" + kpi + ".png", magnification=magnification, quality=100) if 'animation' in metrichash: makeAnim = data_IO.str2bool(metrichash['animation']) else: makeAnim = False if makeAnim: pvutils.makeAnimation(outputDir, kpi, magnification) if 'blender' in metrichash: export2Blender = data_IO.str2bool(metrichash['blender']) else: export2Blender = False if export2Blender: try: blenderContext = metrichash['blendercontext'].split(",") except: blenderContext = [] try: renderBody = metrichash['blenderbody'].split(",") except: renderBody = False pvutils.exportx3d(outputDir, kpi, d, dataReader, renderBody,
d = pvutils.createBasic(metrichash, dataReader, readerDisplay) if extractStats: pvutils.extractStats(d, kpi, kpifield, kpiComp, kpitype, fp_csv_metrics) if kpiimage != "None" and kpiimage != "plot": if not (os.path.exists(outputDir)): os.makedirs(outputDir) if caseNumber: metrichash['imageName'] = metrichash['imageName'].format( int(caseNumber)) SaveScreenshot(outputDir + '/' + metrichash['imageName'], magnification=magnification, quality=100) if makeAnim: animationName = metrichash['animationName'] if caseNumber: animationName = animationName.format(int(caseNumber)) pvutils.makeAnimation(outputDir, kpi, magnification, animationName) if export2Blender: blenderContext = metrichash['blendercontext'] renderBody = metrichash['blenderbody'] pvutils.exportx3d(outputDir, kpi, d, dataReader, renderBody, blenderContext) fp_csv_metrics.close()