示例#1
0
  def testOk(self):
    def ok():
      time.sleep(1)

    t = test_util.TestCase()
    test_util.wrap_test(ok, t)
    self.assertGreater(t.time, 0)
    self.assertEquals(None, t.failure)
示例#2
0
def setup(args):
    """Test deploying Kubeflow."""
    if args.cluster:
        project = args.project
        cluster_name = args.cluster
        zone = args.zone
        logging.info("Using cluster: %s in project: %s in zone: %s",
                     cluster_name, project, zone)
        # Print out config to help debug issues with accounts and
        # credentials.
        util.run(["gcloud", "config", "list"])
        util.configure_kubectl(project, zone, cluster_name)
        util.load_kube_config()
    else:
        # TODO(jlewi): This is sufficient for API access but it doesn't create
        # a kubeconfig file which ksonnet needs for ks init.
        logging.info("Running inside cluster.")
        incluster_config.load_incluster_config()

    # Create an API client object to talk to the K8s master.
    api_client = k8s_client.ApiClient()

    now = datetime.datetime.now()
    run_label = "e2e-" + now.strftime("%m%d-%H%M-") + uuid.uuid4().hex[0:4]

    if not os.path.exists(args.test_dir):
        os.makedirs(args.test_dir)

    logging.info("Using test directory: %s", args.test_dir)

    namespace_name = run_label

    def run():
        namespace = _setup_test(api_client, namespace_name)
        logging.info("Using namespace: %s", namespace)
        # Set a GITHUB_TOKEN so that we don't rate limited by GitHub;
        # see: https://github.com/ksonnet/ksonnet/issues/233
        os.environ["GITHUB_TOKEN"] = args.github_token

        # Initialize a ksonnet app.
        app_name = "kubeflow-test"
        util.run([
            "ks",
            "init",
            app_name,
        ], cwd=args.test_dir, use_print=True)

        app_dir = os.path.join(args.test_dir, app_name)

        kubeflow_registry = "github.com/google/kubeflow/tree/master/kubeflow"
        util.run(["ks", "registry", "add", "kubeflow", kubeflow_registry],
                 cwd=app_dir)

        # Install required packages
        packages = ["kubeflow/core", "kubeflow/tf-serving", "kubeflow/tf-job"]

        for p in packages:
            util.run(["ks", "pkg", "install", p], cwd=app_dir)

        # Delete the vendor directory and replace with a symlink to the src
        # so that we use the code at the desired commit.
        target_dir = os.path.join(app_dir, "vendor", "kubeflow")

        logging.info("Deleting %s", target_dir)
        shutil.rmtree(target_dir)

        source = os.path.join(args.test_dir, "src", "kubeflow")
        logging.info("Creating link %s -> %s", target_dir, source)
        os.symlink(source, target_dir)

        # Deploy Kubeflow
        util.run([
            "ks", "generate", "core", "kubeflow-core", "--name=kubeflow-core",
            "--namespace=" + namespace.metadata.name
        ],
                 cwd=app_dir)

        # TODO(jlewi): For reasons I don't understand even though we ran
        # configure_kubectl above, if we don't rerun it we get rbac errors
        # when we do ks apply; I think because we aren't using the proper service
        # account. This might have something to do with the way ksonnet gets
        # its credentials; maybe we need to configure credentials after calling
        # ks init?
        if args.cluster:
            util.configure_kubectl(args.project, args.zone, args.cluster)

        apply_command = [
            "ks",
            "apply",
            "default",
            "-c",
            "kubeflow-core",
        ]

        util.run(apply_command, cwd=app_dir)

        # Verify that the TfJob operator is actually deployed.
        tf_job_deployment_name = "tf-job-operator"
        logging.info("Verifying TfJob controller started.")
        util.wait_for_deployment(api_client, namespace.metadata.name,
                                 tf_job_deployment_name)

        # Verify that JupyterHub is actually deployed.
        jupyter_name = "tf-hub"
        logging.info("Verifying TfHub started.")
        util.wait_for_statefulset(api_client, namespace.metadata.name,
                                  jupyter_name)

    main_case = test_util.TestCase()
    main_case.class_name = "KubeFlow"
    main_case.name = "deploy-kubeflow"
    try:
        test_util.wrap_test(run, main_case)
    finally:
        # Delete the namespace
        logging.info("Deleting namespace %s", namespace_name)

        # We report teardown as a separate test case because this will help
        # us track down issues with garbage collecting namespaces.
        teardown = test_util.TestCase(main_case.class_name, "teardown")

        def run_teardown():
            core_api = k8s_client.CoreV1Api(api_client)
            core_api.delete_namespace(namespace_name, {})

        try:
            test_util.wrap_test(run_teardown, teardown)
        except Exception as e:  # pylint: disable-msg=broad-except
            logging.error("There was a problem deleting namespace: %s; %s",
                          namespace_name, e.message)
        junit_path = os.path.join(args.artifacts_dir,
                                  "junit_kubeflow-deploy.xml")
        logging.info("Writing test results to %s", junit_path)
        test_util.create_junit_xml_file([main_case, teardown], junit_path)
示例#3
0
def setup(args):
    """Test deploying Kubeflow."""
    if args.cluster:
        project = args.project
        cluster_name = args.cluster
        zone = args.zone
        logging.info("Using cluster: %s in project: %s in zone: %s",
                     cluster_name, project, zone)
        # Print out config to help debug issues with accounts and
        # credentials.
        util.run(["gcloud", "config", "list"])
        util.configure_kubectl(project, zone, cluster_name)
        util.load_kube_config()
    else:
        # TODO(jlewi): This is sufficient for API access but it doesn't create
        # a kubeconfig file which ksonnet needs for ks init.
        logging.info("Running inside cluster.")
        incluster_config.load_incluster_config()

    # Create an API client object to talk to the K8s master.
    api_client = k8s_client.ApiClient()

    now = datetime.datetime.now()
    run_label = "e2e-" + now.strftime("%m%d-%H%M-") + uuid.uuid4().hex[0:4]

    if not os.path.exists(args.test_dir):
        os.makedirs(args.test_dir)

    logging.info("Using test directory: %s", args.test_dir)

    namespace_name = run_label

    def run():
        namespace = _setup_test(api_client, namespace_name)
        logging.info("Using namespace: %s", namespace)
        # Set a GITHUB_TOKEN so that we don't rate limited by GitHub;
        # see: https://github.com/ksonnet/ksonnet/issues/233
        os.environ["GITHUB_TOKEN"] = args.github_token

        # Initialize a ksonnet app.
        app_name = "kubeflow-test"
        util.run([
            "ks",
            "init",
            app_name,
        ], cwd=args.test_dir, use_print=True)

        app_dir = os.path.join(args.test_dir, app_name)

        # TODO(jlewi): In presubmits we probably want to change this so we can
        # pull the changes on a branch. Its not clear whether that's well supported
        # in Ksonnet yet.
        kubeflow_registry = "github.com/google/kubeflow/tree/master/kubeflow"
        util.run(["ks", "registry", "add", "kubeflow", kubeflow_registry],
                 cwd=app_dir)

        # Install required packages
        # TODO(jlewi): For presubmits how do we pull the package from the desired
        # branch at the desired commit.
        packages = ["kubeflow/core", "kubeflow/tf-serving", "kubeflow/tf-job"]

        for p in packages:
            util.run(["ks", "pkg", "install", p], cwd=app_dir)

        # Deploy Kubeflow
        util.run([
            "ks", "generate", "core", "kubeflow-core", "--name=kubeflow-core",
            "--namespace=" + namespace.metadata.name
        ],
                 cwd=app_dir)

        apply_command = [
            "ks",
            "apply",
            "default",
            "-c",
            "kubeflow-core",
        ]

        if os.getenv("GOOGLE_APPLICATION_CREDENTIALS"):
            with open(os.getenv("GOOGLE_APPLICATION_CREDENTIALS")) as hf:
                key = json.load(hf)
                apply_command.append("--as=" + key["client_email"])
        util.run(apply_command, cwd=app_dir)

        # Verify that the TfJob operator is actually deployed.
        tf_job_deployment_name = "tf-job-operator"
        logging.info("Verifying TfJob controller started.")
        util.wait_for_deployment(api_client, namespace.metadata.name,
                                 tf_job_deployment_name)

        # Verify that JupyterHub is actually deployed.
        jupyter_name = "tf-hub"
        logging.info("Verifying TfHub started.")
        util.wait_for_statefulset(api_client, namespace.metadata.name,
                                  jupyter_name)

    main_case = test_util.TestCase()
    main_case.class_name = "KubeFlow"
    main_case.name = "deploy-kubeflow"
    try:
        test_util.wrap_test(run, main_case)
    finally:
        # Delete the namespace
        logging.info("Deleting namespace %s", namespace_name)

        # We report teardown as a separate test case because this will help
        # us track down issues with garbage collecting namespaces.
        teardown = test_util.TestCase(main_case.class_name, "teardown")

        def run_teardown():
            core_api = k8s_client.CoreV1Api(api_client)
            core_api.delete_namespace(namespace_name, {})

        try:
            test_util.wrap_test(run_teardown, teardown)
        except Exception as e:  # pylint: disable-msg=broad-except
            logging.error("There was a problem deleting namespace: %s; %s",
                          namespace_name, e.message)
        junit_path = os.path.join(args.artifacts_dir,
                                  "junit_kubeflow-deploy.xml")
        logging.info("Writing test results to %s", junit_path)
        test_util.create_junit_xml_file([main_case, teardown], junit_path)