def __init__(self, name, aabb, spacing): super(Node, self).__init__() self.name = name self.aabb = aabb.astype(np.float32) self.aabb_size = (aabb[1] - aabb[0]).astype(np.float32) self.inv_aabb_size = (1.0 / self.aabb_size).astype(np.float32) self.aabb_center = ((aabb[0] + aabb[1]) * 0.5).astype(np.float32) self.spacing = spacing self.pending_xyz = [] self.pending_rgb = [] self.children = None self.grid = Grid(self) self.serialized_at = None self.points = [] self.dirty = False
class Node(object): """docstring for Node""" __slots__ = ('name', 'aabb', 'aabb_size', 'inv_aabb_size', 'aabb_center', 'spacing', 'pending_xyz', 'pending_rgb', 'children', 'grid', 'serialized_at', 'points', 'dirty') def __init__(self, name, aabb, spacing): super(Node, self).__init__() self.name = name self.aabb = aabb.astype(np.float32) self.aabb_size = (aabb[1] - aabb[0]).astype(np.float32) self.inv_aabb_size = (1.0 / self.aabb_size).astype(np.float32) self.aabb_center = ((aabb[0] + aabb[1]) * 0.5).astype(np.float32) self.spacing = spacing self.pending_xyz = [] self.pending_rgb = [] self.children = None self.grid = Grid(self) self.serialized_at = None self.points = [] self.dirty = False def save_to_bytes(self): sub_pickle = {} if self.children is not None: sub_pickle['children'] = self.children sub_pickle['grid'] = self.grid else: sub_pickle['points'] = self.points d = pdumps(sub_pickle) return d def load_from_bytes(self, byt): sub_pickle = ploads(byt) if 'children' in sub_pickle: self.children = sub_pickle['children'] self.grid = sub_pickle['grid'] else: self.points = sub_pickle['points'] def insert(self, node_catalog, scale, xyz, rgb, make_empty_node=False): if make_empty_node: self.children = [] self.pending_xyz += [xyz] self.pending_rgb += [rgb] return # fastpath if self.children is None: self.points.append((xyz, rgb)) count = sum([xyz.shape[0] for xyz, rgb in self.points]) # stop subdividing if spacing is 1mm if count >= 20000 and self.spacing > 0.001 * scale: self._split(node_catalog, scale) self.dirty = True return True # grid based insertion reminder_xyz, reminder_rgb, needs_balance = self.grid.insert( self.aabb[0], self.inv_aabb_size, xyz, rgb) if needs_balance: self.grid.balance(self.aabb_size, self.aabb[0], self.inv_aabb_size) self.dirty = True self.dirty = self.dirty or (len(reminder_xyz) != len(xyz)) if len(reminder_xyz) > 0: self.pending_xyz += [reminder_xyz] self.pending_rgb += [reminder_rgb] def needs_balance(self): if self.children is not None: return self.grid.needs_balance() return False def flush_pending_points(self, catalog, scale): for name, xyz, rgb in self._get_pending_points(): catalog.get_node(name).insert(catalog, scale, xyz, rgb) self.pending_xyz = [] self.pending_rgb = [] def dump_pending_points(self): result = [(name, pdumps({ 'xyz': xyz, 'rgb': rgb }), len(xyz)) for name, xyz, rgb in self._get_pending_points()] self.pending_xyz = [] self.pending_rgb = [] return result def get_pending_points_count(self): return sum([xyz.shape[0] for xyz in self.pending_xyz]) def _get_pending_points(self): if not self.pending_xyz: return pending_xyz_arr = np.concatenate(self.pending_xyz) pending_rgb_arr = np.concatenate(self.pending_rgb) t = aabb_size_to_subdivision_type(self.aabb_size) if t == SubdivisionType.QUADTREE: indices = xyz_to_child_index( pending_xyz_arr, np.array([ self.aabb_center[0], self.aabb_center[1], self.aabb[1][2] ], dtype=np.float32)) else: indices = xyz_to_child_index(pending_xyz_arr, self.aabb_center) # unique children list childs = np.unique(indices) # make sure all children nodes exist for child in childs: name = '{}{}'.format(self.name.decode('ascii'), child).encode('ascii') # create missing nodes, only for remembering they exist. # We don't want to serialize them # probably not needed... if name not in self.children: self.children += [name] self.dirty = True # print('Added node {}'.format(name)) mask = np.where(indices - child == 0) xyz = pending_xyz_arr[mask] if len(xyz) > 0: yield name, xyz, pending_rgb_arr[mask] def _split(self, node_catalog, scale): self.children = [] for xyz, rgb in self.points: self.insert(node_catalog, scale, xyz, rgb) self.points = None def get_point_count(self, node_catalog, max_depth, depth=0): if self.children is None: return sum([xyz.shape[0] for xyz, rgb in self.points]) else: count = self.grid.get_point_count() if depth < max_depth: for n in self.children: count += node_catalog.get_node(n).get_point_count( node_catalog, max_depth, depth + 1) return count @staticmethod def get_points(data, include_rgb): if data.children is None: points = data.points xyz = np.concatenate(tuple([xyz for xyz, rgb in points ])).view(np.uint8).ravel() rgb = np.concatenate(tuple([rgb for xyz, rgb in points])).ravel() count = sum([xyz.shape[0] for xyz, rgb in points]) if include_rgb: result = np.concatenate((xyz, rgb)) assert len(result) == count * (3 * 4 + 3) return result else: return xyz else: return data.grid.get_points(include_rgb) @staticmethod def to_tileset(executor, name, parent_aabb, parent_spacing, folder, scale): node = node_from_name(name, parent_aabb, parent_spacing) aabb = node.aabb ondisk_tile = name_to_filename(folder, name, '.pnts') xyz, rgb = None, None # Read tile's pnts file, if existing, we'll need it for: # - computing the real AABB (instead of the one based on the octree) # - merging this tile's small (<100 points) children if os.path.exists(ondisk_tile): tile = TileReader().read_file(ondisk_tile) fth = tile.body.feature_table.header xyz = tile.body.feature_table.body.positions_arr if fth.colors != SemanticPoint.NONE: rgb = tile.body.feature_table.body.colors_arr xyz_float = xyz.view(np.float32).reshape((fth.points_length, 3)) # update aabb based on real values aabb = np.array( [np.amin(xyz_float, axis=0), np.amax(xyz_float, axis=0)]) # geometricError is in meters, so we divide it by the scale tileset = {'geometricError': 10 * node.spacing / scale[0]} children = [] tile_needs_rewrite = False if os.path.exists(ondisk_tile): tileset['content'] = {'uri': os.path.relpath(ondisk_tile, folder)} for child in ['0', '1', '2', '3', '4', '5', '6', '7']: child_name = '{}{}'.format(name.decode('ascii'), child).encode('ascii') child_ondisk_tile = name_to_filename(folder, child_name, '.pnts') if os.path.exists(child_ondisk_tile): # See if we should merge this child in tile if xyz is not None: # Read pnts content tile = TileReader().read_file(child_ondisk_tile) fth = tile.body.feature_table.header # If this child is small enough, merge in the current tile if fth.points_length < 100: xyz = np.concatenate( (xyz, tile.body.feature_table.body.positions_arr)) if fth.colors != SemanticPoint.NONE: rgb = np.concatenate( (rgb, tile.body.feature_table.body.colors_arr)) # update aabb xyz_float = tile.body.feature_table.body.positions_arr.view( np.float32).reshape((fth.points_length, 3)) aabb[0] = np.amin( [aabb[0], np.min(xyz_float, axis=0)], axis=0) aabb[1] = np.amax( [aabb[1], np.max(xyz_float, axis=0)], axis=0) tile_needs_rewrite = True os.remove(child_ondisk_tile) continue # Add child to the to-be-processed list if it hasn't been merged if executor is not None: children += [(child_name, node.aabb, node.spacing, folder, scale)] else: children += [ Node.to_tileset(None, child_name, node.aabb, node.spacing, folder, scale) ] # If we merged at least one child tile in the current tile # the pnts file needs to be rewritten. if tile_needs_rewrite: os.remove(ondisk_tile) count, filename = points_to_pnts(name, np.concatenate((xyz, rgb)), folder, rgb is not None) center = ((aabb[0] + aabb[1]) * 0.5).tolist() half_size = ((aabb[1] - aabb[0]) * 0.5).tolist() tileset['boundingVolume'] = { 'box': [ center[0], center[1], center[2], half_size[0], 0, 0, 0, half_size[1], 0, 0, 0, half_size[2] ] } if executor is not None: children = [t for t in executor.map(node_to_tileset, children)] if children: tileset['children'] = children else: tileset['geometricError'] = 0.0 if len(name) > 0 and children: if len(json.dumps(tileset)) > 100000: tile_root = { 'asset': { 'version': '1.0', }, 'refine': 'ADD', 'geometricError': tileset['geometricError'], 'root': tileset } tileset_name = 'tileset.{}.json'.format(name.decode('ascii')) with open('{}/{}'.format(folder, tileset_name), 'w') as f: f.write(json.dumps(tile_root)) tileset['content'] = {'uri': tileset_name} tileset['children'] = [] return tileset
def grid(node): return Grid(node)