def classifyFolderWrapper(inputFolder, modelType, modelName, outputMode=False): if not os.path.isfile(modelName): raise Exception("Input modelName not found!") if modelType=='svm': [Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, compute_beat] = aT.load_model(modelName) elif modelType=='knn': [Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, compute_beat] = aT.load_model_knn(modelName) PsAll = numpy.zeros((len(classNames), )) files = "*.wav" if os.path.isdir(inputFolder): strFilePattern = os.path.join(inputFolder, files) else: strFilePattern = inputFolder + files wavFilesList = [] wavFilesList.extend(glob.glob(strFilePattern)) wavFilesList = sorted(wavFilesList) if len(wavFilesList)==0: print ("No WAV files found!") return Results = [] for wavFile in wavFilesList: [Fs, x] = audioBasicIO.readAudioFile(wavFile) signalLength = x.shape[0] / float(Fs) [Result, P, classNames] = aT.fileClassification(wavFile, modelName, modelType) PsAll += (numpy.array(P) * signalLength) Result = int(Result) Results.append(Result) if outputMode: print ("{0:s}\t{1:s}".format(wavFile,classNames[Result])) Results = numpy.array(Results) # print distribution of classes: [Histogram, _] = numpy.histogram(Results, bins=numpy.arange(len(classNames)+1)) if outputMode: for i,h in enumerate(Histogram): print( "{0:20s}\t\t{1:d}".format(classNames[i], h)) PsAll = PsAll / numpy.sum(PsAll) if outputMode: fig = plt.figure() ax = fig.add_subplot(111) plt.title("Classes percentage " + inputFolder.replace('Segments','')) ax.axis((0, len(classNames)+1, 0, 1)) ax.set_xticks(numpy.array(range(len(classNames)+1))) ax.set_xticklabels([" "] + classNames) ax.bar(numpy.array(range(len(classNames)))+0.5, PsAll) plt.show() return classNames, PsAll
def fileClassification(inputFile, model_name, model_type, feats=["gfcc", "mfcc"]): # Load classifier: if not os.path.isfile(model_name): print("fileClassification: input model_name not found!") return (-1, -1, -1) if not os.path.isfile(inputFile): print("fileClassification: wav file not found!") return (-1, -1, -1) if model_type == 'knn': [ classifier, MEAN, STD, classNames, mt_win, mt_step, st_win, st_step, compute_beat ] = load_model_knn(model_name) else: [ classifier, MEAN, STD, classNames, mt_win, mt_step, st_win, st_step, compute_beat ] = load_model(model_name) [Fs, x] = audioBasicIO.readAudioFile( inputFile) # read audio file and convert to mono x = audioBasicIO.stereo2mono(x) if isinstance(x, int): # audio file IO problem return (-1, -1, -1) if x.shape[0] / float(Fs) <= mt_win: return (-1, -1, -1) # feature extraction: [mt_features, s, _] = aF.mtFeatureExtraction(x, Fs, mt_win * Fs, mt_step * Fs, round(Fs * st_win), round(Fs * st_step), feats) mt_features = mt_features.mean( axis=1) # long term averaging of mid-term statistics if compute_beat: [beat, beatConf] = aF.beatExtraction(s, st_step) mt_features = numpy.append(mt_features, beat) mt_features = numpy.append(mt_features, beatConf) curFV = (mt_features - MEAN) / STD # normalization [Result, P] = classifierWrapperHead(classifier, model_type, curFV) # classification return Result, P, classNames
def getMusicSegmentsFromFile(inputFile): modelType = "svm" modelName = "data/svmMovies8classes" dirOutput = inputFile[0:-4] + "_musicSegments" if os.path.exists(dirOutput) and dirOutput!=".": shutil.rmtree(dirOutput) os.makedirs(dirOutput) [Fs, x] = audioBasicIO.readAudioFile(inputFile) if modelType=='svm': [Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, compute_beat] = aT.load_model(modelName) elif modelType=='knn': [Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, compute_beat] = aT.load_model_knn(modelName) flagsInd, classNames, acc, CM = aS.mtFileClassification(inputFile, modelName, modelType, plotResults = False, gtFile = "") segs, classes = aS.flags2segs(flagsInd, mtStep) for i, s in enumerate(segs): if (classNames[int(classes[i])] == "Music") and (s[1] - s[0] >= minDuration): strOut = "{0:s}{1:.3f}-{2:.3f}.wav".format(dirOutput+os.sep, s[0], s[1]) wavfile.write( strOut, Fs, x[int(Fs*s[0]):int(Fs*s[1])])
def speakerDiarization(filename, n_speakers, mt_size=2.0, mt_step=0.2, st_win=0.05, lda_dim=35, plot_res=False): ''' ARGUMENTS: - filename: the name of the WAV file to be analyzed - n_speakers the number of speakers (clusters) in the recording (<=0 for unknown) - mt_size (opt) mid-term window size - mt_step (opt) mid-term window step - st_win (opt) short-term window size - lda_dim (opt) LDA dimension (0 for no LDA) - plot_res (opt) 0 for not plotting the results 1 for plottingy ''' [fs, x] = audioBasicIO.readAudioFile(filename) x = audioBasicIO.stereo2mono(x) duration = len(x) / fs [ classifier_1, MEAN1, STD1, classNames1, mtWin1, mtStep1, stWin1, stStep1, computeBEAT1 ] = aT.load_model_knn( os.path.join(os.path.dirname(os.path.realpath(__file__)), "data", "knnSpeakerAll")) [ classifier_2, MEAN2, STD2, classNames2, mtWin2, mtStep2, stWin2, stStep2, computeBEAT2 ] = aT.load_model_knn( os.path.join(os.path.dirname(os.path.realpath(__file__)), "data", "knnSpeakerFemaleMale")) [mt_feats, st_feats, _] = aF.mtFeatureExtraction(x, fs, mt_size * fs, mt_step * fs, round(fs * st_win), round(fs * st_win * 0.5)) MidTermFeatures2 = numpy.zeros( (mt_feats.shape[0] + len(classNames1) + len(classNames2), mt_feats.shape[1])) for i in range(mt_feats.shape[1]): cur_f1 = (mt_feats[:, i] - MEAN1) / STD1 cur_f2 = (mt_feats[:, i] - MEAN2) / STD2 [res, P1] = aT.classifierWrapper(classifier_1, "knn", cur_f1) [res, P2] = aT.classifierWrapper(classifier_2, "knn", cur_f2) MidTermFeatures2[0:mt_feats.shape[0], i] = mt_feats[:, i] MidTermFeatures2[mt_feats.shape[0]:mt_feats.shape[0] + len(classNames1), i] = P1 + 0.0001 MidTermFeatures2[mt_feats.shape[0] + len(classNames1)::, i] = P2 + 0.0001 mt_feats = MidTermFeatures2 # TODO iFeaturesSelect = [ 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53 ] mt_feats = mt_feats[iFeaturesSelect, :] (mt_feats_norm, MEAN, STD) = aT.normalizeFeatures([mt_feats.T]) mt_feats_norm = mt_feats_norm[0].T n_wins = mt_feats.shape[1] # remove outliers: dist_all = numpy.sum(distance.squareform(distance.pdist(mt_feats_norm.T)), axis=0) m_dist_all = numpy.mean(dist_all) i_non_outliers = numpy.nonzero(dist_all < 1.2 * m_dist_all)[0] # TODO: Combine energy threshold for outlier removal: #EnergyMin = numpy.min(mt_feats[1,:]) #EnergyMean = numpy.mean(mt_feats[1,:]) #Thres = (1.5*EnergyMin + 0.5*EnergyMean) / 2.0 #i_non_outliers = numpy.nonzero(mt_feats[1,:] > Thres)[0] #print i_non_outliers perOutLier = (100.0 * (n_wins - i_non_outliers.shape[0])) / n_wins mt_feats_norm_or = mt_feats_norm mt_feats_norm = mt_feats_norm[:, i_non_outliers] # LDA dimensionality reduction: if lda_dim > 0: #[mt_feats_to_red, _, _] = aF.mtFeatureExtraction(x, fs, mt_size * fs, st_win * fs, round(fs*st_win), round(fs*st_win)); # extract mid-term features with minimum step: mt_win_ratio = int(round(mt_size / st_win)) mt_step_ratio = int(round(st_win / st_win)) mt_feats_to_red = [] num_of_features = len(st_feats) num_of_stats = 2 #for i in range(num_of_stats * num_of_features + 1): for i in range(num_of_stats * num_of_features): mt_feats_to_red.append([]) for i in range( num_of_features): # for each of the short-term features: curPos = 0 N = len(st_feats[i]) while (curPos < N): N1 = curPos N2 = curPos + mt_win_ratio if N2 > N: N2 = N curStFeatures = st_feats[i][N1:N2] mt_feats_to_red[i].append(numpy.mean(curStFeatures)) mt_feats_to_red[i + num_of_features].append( numpy.std(curStFeatures)) curPos += mt_step_ratio mt_feats_to_red = numpy.array(mt_feats_to_red) mt_feats_to_red_2 = numpy.zeros( (mt_feats_to_red.shape[0] + len(classNames1) + len(classNames2), mt_feats_to_red.shape[1])) for i in range(mt_feats_to_red.shape[1]): cur_f1 = (mt_feats_to_red[:, i] - MEAN1) / STD1 cur_f2 = (mt_feats_to_red[:, i] - MEAN2) / STD2 [res, P1] = aT.classifierWrapper(classifier_1, "knn", cur_f1) [res, P2] = aT.classifierWrapper(classifier_2, "knn", cur_f2) mt_feats_to_red_2[0:mt_feats_to_red.shape[0], i] = mt_feats_to_red[:, i] mt_feats_to_red_2[ mt_feats_to_red.shape[0]:mt_feats_to_red.shape[0] + len(classNames1), i] = P1 + 0.0001 mt_feats_to_red_2[mt_feats_to_red.shape[0] + len(classNames1)::, i] = P2 + 0.0001 mt_feats_to_red = mt_feats_to_red_2 mt_feats_to_red = mt_feats_to_red[iFeaturesSelect, :] #mt_feats_to_red += numpy.random.rand(mt_feats_to_red.shape[0], mt_feats_to_red.shape[1]) * 0.0000010 (mt_feats_to_red, MEAN, STD) = aT.normalizeFeatures([mt_feats_to_red.T]) mt_feats_to_red = mt_feats_to_red[0].T #dist_all = numpy.sum(distance.squareform(distance.pdist(mt_feats_to_red.T)), axis=0) #m_dist_all = numpy.mean(dist_all) #iNonOutLiers2 = numpy.nonzero(dist_all < 3.0*m_dist_all)[0] #mt_feats_to_red = mt_feats_to_red[:, iNonOutLiers2] Labels = numpy.zeros((mt_feats_to_red.shape[1], )) LDAstep = 1.0 LDAstepRatio = LDAstep / st_win #print LDAstep, LDAstepRatio for i in range(Labels.shape[0]): Labels[i] = int(i * st_win / LDAstepRatio) clf = sklearn.discriminant_analysis.LinearDiscriminantAnalysis( n_components=lda_dim) clf.fit(mt_feats_to_red.T, Labels) mt_feats_norm = (clf.transform(mt_feats_norm.T)).T if n_speakers <= 0: s_range = range(2, 10) else: s_range = [n_speakers] clsAll = [] sil_all = [] centersAll = [] for iSpeakers in s_range: k_means = sklearn.cluster.KMeans(n_clusters=iSpeakers) k_means.fit(mt_feats_norm.T) cls = k_means.labels_ means = k_means.cluster_centers_ # Y = distance.squareform(distance.pdist(mt_feats_norm.T)) clsAll.append(cls) centersAll.append(means) sil_1 = [] sil_2 = [] for c in range(iSpeakers): # for each speaker (i.e. for each extracted cluster) clust_per_cent = numpy.nonzero(cls == c)[0].shape[0] / \ float(len(cls)) if clust_per_cent < 0.020: sil_1.append(0.0) sil_2.append(0.0) else: # get subset of feature vectors mt_feats_norm_temp = mt_feats_norm[:, cls == c] # compute average distance between samples # that belong to the cluster (a values) Yt = distance.pdist(mt_feats_norm_temp.T) sil_1.append(numpy.mean(Yt) * clust_per_cent) silBs = [] for c2 in range(iSpeakers): # compute distances from samples of other clusters if c2 != c: clust_per_cent_2 = numpy.nonzero(cls == c2)[0].shape[0] /\ float(len(cls)) MidTermFeaturesNormTemp2 = mt_feats_norm[:, cls == c2] Yt = distance.cdist(mt_feats_norm_temp.T, MidTermFeaturesNormTemp2.T) silBs.append( numpy.mean(Yt) * (clust_per_cent + clust_per_cent_2) / 2.0) silBs = numpy.array(silBs) # ... and keep the minimum value (i.e. # the distance from the "nearest" cluster) sil_2.append(min(silBs)) sil_1 = numpy.array(sil_1) sil_2 = numpy.array(sil_2) sil = [] for c in range(iSpeakers): # for each cluster (speaker) compute silhouette sil.append( (sil_2[c] - sil_1[c]) / (max(sil_2[c], sil_1[c]) + 0.00001)) # keep the AVERAGE SILLOUETTE sil_all.append(numpy.mean(sil)) imax = numpy.argmax(sil_all) # optimal number of clusters nSpeakersFinal = s_range[imax] # generate the final set of cluster labels # (important: need to retrieve the outlier windows: # this is achieved by giving them the value of their # nearest non-outlier window) cls = numpy.zeros((n_wins, )) for i in range(n_wins): j = numpy.argmin(numpy.abs(i - i_non_outliers)) cls[i] = clsAll[imax][j] # Post-process method 1: hmm smoothing for i in range(1): # hmm training start_prob, transmat, means, cov = \ trainHMM_computeStatistics(mt_feats_norm_or, cls) hmm = hmmlearn.hmm.GaussianHMM(start_prob.shape[0], "diag") hmm.startprob_ = start_prob hmm.transmat_ = transmat hmm.means_ = means hmm.covars_ = cov cls = hmm.predict(mt_feats_norm_or.T) # Post-process method 2: median filtering: cls = scipy.signal.medfilt(cls, 13) cls = scipy.signal.medfilt(cls, 11) sil = sil_all[imax] class_names = ["speaker{0:d}".format(c) for c in range(nSpeakersFinal)] # load ground-truth if available gt_file = filename.replace('.wav', '.segments') # if groundturh exists if os.path.isfile(gt_file): [seg_start, seg_end, seg_labs] = readSegmentGT(gt_file) flags_gt, class_names_gt = segs2flags(seg_start, seg_end, seg_labs, mt_step) if plot_res: fig = plt.figure() if n_speakers > 0: ax1 = fig.add_subplot(111) else: ax1 = fig.add_subplot(211) ax1.set_yticks(numpy.array(range(len(class_names)))) ax1.axis((0, duration, -1, len(class_names))) ax1.set_yticklabels(class_names) ax1.plot(numpy.array(range(len(cls))) * mt_step + mt_step / 2.0, cls) if os.path.isfile(gt_file): if plot_res: ax1.plot( numpy.array(range(len(flags_gt))) * mt_step + mt_step / 2.0, flags_gt, 'r') purity_cluster_m, purity_speaker_m = \ evaluateSpeakerDiarization(cls, flags_gt) print("{0:.1f}\t{1:.1f}".format(100 * purity_cluster_m, 100 * purity_speaker_m)) if plot_res: plt.title("Cluster purity: {0:.1f}% - " "Speaker purity: {1:.1f}%".format( 100 * purity_cluster_m, 100 * purity_speaker_m)) if plot_res: plt.xlabel("time (seconds)") #print s_range, sil_all if n_speakers <= 0: plt.subplot(212) plt.plot(s_range, sil_all) plt.xlabel("number of clusters") plt.ylabel("average clustering's sillouette") plt.show() return cls
def mtFileClassification(input_file, model_name, model_type, plot_results=False, gt_file=""): ''' This function performs mid-term classification of an audio stream. Towards this end, supervised knowledge is used, i.e. a pre-trained classifier. ARGUMENTS: - input_file: path of the input WAV file - model_name: name of the classification model - model_type: svm or knn depending on the classifier type - plot_results: True if results are to be plotted using matplotlib along with a set of statistics RETURNS: - segs: a sequence of segment's endpoints: segs[i] is the endpoint of the i-th segment (in seconds) - classes: a sequence of class flags: class[i] is the class ID of the i-th segment ''' if not os.path.isfile(model_name): print("mtFileClassificationError: input model_type not found!") return (-1, -1, -1, -1) # Load classifier: if model_type == "knn": [classifier, MEAN, STD, class_names, mt_win, mt_step, st_win, st_step, compute_beat] = \ aT.load_model_knn(model_name) else: [ classifier, MEAN, STD, class_names, mt_win, mt_step, st_win, st_step, compute_beat ] = aT.load_model(model_name) if compute_beat: print("Model " + model_name + " contains long-term music features " "(beat etc) and cannot be used in " "segmentation") return (-1, -1, -1, -1) [fs, x] = audioBasicIO.readAudioFile(input_file) # load input file if fs == -1: # could not read file return (-1, -1, -1, -1) x = audioBasicIO.stereo2mono(x) # convert stereo (if) to mono duration = len(x) / fs # mid-term feature extraction: [mt_feats, _, _] = aF.mtFeatureExtraction(x, fs, mt_win * fs, mt_step * fs, round(fs * st_win), round(fs * st_step)) flags = [] Ps = [] flags_ind = [] for i in range( mt_feats.shape[1] ): # for each feature vector (i.e. for each fix-sized segment): cur_fv = (mt_feats[:, i] - MEAN) / STD # normalize current feature vector [res, P] = aT.classifierWrapper(classifier, model_type, cur_fv) # classify vector flags_ind.append(res) flags.append(class_names[int(res)]) # update class label matrix Ps.append(numpy.max(P)) # update probability matrix flags_ind = numpy.array(flags_ind) # 1-window smoothing for i in range(1, len(flags_ind) - 1): if flags_ind[i - 1] == flags_ind[i + 1]: flags_ind[i] = flags_ind[i + 1] # convert fix-sized flags to segments and classes (segs, classes) = flags2segs(flags, mt_step) segs[-1] = len(x) / float(fs) # Load grount-truth: if os.path.isfile(gt_file): [seg_start_gt, seg_end_gt, seg_l_gt] = readSegmentGT(gt_file) flags_gt, class_names_gt = segs2flags(seg_start_gt, seg_end_gt, seg_l_gt, mt_step) flags_ind_gt = [] for j, fl in enumerate(flags_gt): # "align" labels with GT if class_names_gt[flags_gt[j]] in class_names: flags_ind_gt.append( class_names.index(class_names_gt[flags_gt[j]])) else: flags_ind_gt.append(-1) flags_ind_gt = numpy.array(flags_ind_gt) cm = numpy.zeros((len(class_names_gt), len(class_names_gt))) for i in range(min(flags_ind.shape[0], flags_ind_gt.shape[0])): cm[int(flags_ind_gt[i]), int(flags_ind[i])] += 1 else: cm = [] flags_ind_gt = numpy.array([]) acc = plotSegmentationResults(flags_ind, flags_ind_gt, class_names, mt_step, not plot_results) if acc >= 0: print("Overall Accuracy: {0:.3f}".format(acc)) return (flags_ind, class_names_gt, acc, cm) else: return (flags_ind, class_names, acc, cm)
def speaker_diarization(filename, n_speakers, mid_window=2.0, mid_step=0.2, short_window=0.05, lda_dim=35, plot_res=False): """ ARGUMENTS: - filename: the name of the WAV file to be analyzed - n_speakers the number of speakers (clusters) in the recording (<=0 for unknown) - mid_window (opt) mid-term window size - mid_step (opt) mid-term window step - short_window (opt) short-term window size - lda_dim (opt LDA dimension (0 for no LDA) - plot_res (opt) 0 for not plotting the results 1 for plotting """ sampling_rate, signal = audioBasicIO.read_audio_file(filename) signal = audioBasicIO.stereo_to_mono(signal) duration = len(signal) / sampling_rate base_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "data/models") classifier_all, mean_all, std_all, class_names_all, _, _, _, _, _ = \ at.load_model_knn(os.path.join(base_dir, "knn_speaker_10")) classifier_fm, mean_fm, std_fm, class_names_fm, _, _, _, _, _ = \ at.load_model_knn(os.path.join(base_dir, "knn_speaker_male_female")) mid_feats, st_feats, _ = \ mtf.mid_feature_extraction(signal, sampling_rate, mid_window * sampling_rate, mid_step * sampling_rate, round(sampling_rate * short_window), round(sampling_rate * short_window * 0.5)) mid_term_features = np.zeros( (mid_feats.shape[0] + len(class_names_all) + len(class_names_fm), mid_feats.shape[1])) for index in range(mid_feats.shape[1]): feature_norm_all = (mid_feats[:, index] - mean_all) / std_all feature_norm_fm = (mid_feats[:, index] - mean_fm) / std_fm _, p1 = at.classifier_wrapper(classifier_all, "knn", feature_norm_all) _, p2 = at.classifier_wrapper(classifier_fm, "knn", feature_norm_fm) start = mid_feats.shape[0] end = mid_feats.shape[0] + len(class_names_all) mid_term_features[0:mid_feats.shape[0], index] = mid_feats[:, index] mid_term_features[start:end, index] = p1 + 1e-4 mid_term_features[end::, index] = p2 + 1e-4 mid_feats = mid_term_features # TODO feature_selected = [ 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53 ] mid_feats = mid_feats[feature_selected, :] mid_feats_norm, mean, std = at.normalize_features([mid_feats.T]) mid_feats_norm = mid_feats_norm[0].T n_wins = mid_feats.shape[1] # remove outliers: dist_all = np.sum(distance.squareform(distance.pdist(mid_feats_norm.T)), axis=0) m_dist_all = np.mean(dist_all) i_non_outliers = np.nonzero(dist_all < 1.2 * m_dist_all)[0] # TODO: Combine energy threshold for outlier removal: # EnergyMin = np.min(mt_feats[1,:]) # EnergyMean = np.mean(mt_feats[1,:]) # Thres = (1.5*EnergyMin + 0.5*EnergyMean) / 2.0 # i_non_outliers = np.nonzero(mt_feats[1,:] > Thres)[0] # print i_non_outliers mt_feats_norm_or = mid_feats_norm mid_feats_norm = mid_feats_norm[:, i_non_outliers] # LDA dimensionality reduction: if lda_dim > 0: # extract mid-term features with minimum step: window_ratio = int(round(mid_window / short_window)) step_ratio = int(round(short_window / short_window)) mt_feats_to_red = [] num_of_features = len(st_feats) num_of_stats = 2 for index in range(num_of_stats * num_of_features): mt_feats_to_red.append([]) # for each of the short-term features: for index in range(num_of_features): cur_pos = 0 feat_len = len(st_feats[index]) while cur_pos < feat_len: n1 = cur_pos n2 = cur_pos + window_ratio if n2 > feat_len: n2 = feat_len short_features = st_feats[index][n1:n2] mt_feats_to_red[index].append(np.mean(short_features)) mt_feats_to_red[index + num_of_features].\ append(np.std(short_features)) cur_pos += step_ratio mt_feats_to_red = np.array(mt_feats_to_red) mt_feats_to_red_2 = np.zeros( (mt_feats_to_red.shape[0] + len(class_names_all) + len(class_names_fm), mt_feats_to_red.shape[1])) limit = mt_feats_to_red.shape[0] + len(class_names_all) for index in range(mt_feats_to_red.shape[1]): feature_norm_all = (mt_feats_to_red[:, index] - mean_all) / std_all feature_norm_fm = (mt_feats_to_red[:, index] - mean_fm) / std_fm _, p1 = at.classifier_wrapper(classifier_all, "knn", feature_norm_all) _, p2 = at.classifier_wrapper(classifier_fm, "knn", feature_norm_fm) mt_feats_to_red_2[0:mt_feats_to_red.shape[0], index] = \ mt_feats_to_red[:, index] mt_feats_to_red_2[mt_feats_to_red.shape[0]:limit, index] = p1 + 1e-4 mt_feats_to_red_2[limit::, index] = p2 + 1e-4 mt_feats_to_red = mt_feats_to_red_2 mt_feats_to_red = mt_feats_to_red[feature_selected, :] mt_feats_to_red, mean, std = at.normalize_features([mt_feats_to_red.T]) mt_feats_to_red = mt_feats_to_red[0].T labels = np.zeros((mt_feats_to_red.shape[1], )) lda_step = 1.0 lda_step_ratio = lda_step / short_window for index in range(labels.shape[0]): labels[index] = int(index * short_window / lda_step_ratio) clf = sklearn.discriminant_analysis.\ LinearDiscriminantAnalysis(n_components=lda_dim) clf.fit(mt_feats_to_red.T, labels) mid_feats_norm = (clf.transform(mid_feats_norm.T)).T if n_speakers <= 0: s_range = range(2, 10) else: s_range = [n_speakers] cluster_labels = [] sil_all = [] cluster_centers = [] for speakers in s_range: k_means = sklearn.cluster.KMeans(n_clusters=speakers) k_means.fit(mid_feats_norm.T) cls = k_means.labels_ means = k_means.cluster_centers_ cluster_labels.append(cls) cluster_centers.append(means) sil_1 = [] sil_2 = [] for c in range(speakers): # for each speaker (i.e. for each extracted cluster) clust_per_cent = np.nonzero(cls == c)[0].shape[0] / float(len(cls)) if clust_per_cent < 0.020: sil_1.append(0.0) sil_2.append(0.0) else: # get subset of feature vectors mt_feats_norm_temp = mid_feats_norm[:, cls == c] # compute average distance between samples # that belong to the cluster (a values) dist = distance.pdist(mt_feats_norm_temp.T) sil_1.append(np.mean(dist) * clust_per_cent) sil_temp = [] for c2 in range(speakers): # compute distances from samples of other clusters if c2 != c: clust_per_cent_2 = np.nonzero(cls == c2)[0].shape[0] /\ float(len(cls)) mid_features_temp = mid_feats_norm[:, cls == c2] dist = distance.cdist(mt_feats_norm_temp.T, mid_features_temp.T) sil_temp.append( np.mean(dist) * (clust_per_cent + clust_per_cent_2) / 2.0) sil_temp = np.array(sil_temp) # ... and keep the minimum value (i.e. # the distance from the "nearest" cluster) sil_2.append(min(sil_temp)) sil_1 = np.array(sil_1) sil_2 = np.array(sil_2) sil = [] for c in range(speakers): # for each cluster (speaker) compute silhouette sil.append( (sil_2[c] - sil_1[c]) / (max(sil_2[c], sil_1[c]) + 1e-5)) # keep the AVERAGE SILLOUETTE sil_all.append(np.mean(sil)) imax = int(np.argmax(sil_all)) # optimal number of clusters num_speakers = s_range[imax] # generate the final set of cluster labels # (important: need to retrieve the outlier windows: # this is achieved by giving them the value of their # nearest non-outlier window) cls = np.zeros((n_wins, )) for index in range(n_wins): j = np.argmin(np.abs(index - i_non_outliers)) cls[index] = cluster_labels[imax][j] # Post-process method 1: hmm smoothing for index in range(1): # hmm training start_prob, transmat, means, cov = \ train_hmm_compute_statistics(mt_feats_norm_or, cls) hmm = hmmlearn.hmm.GaussianHMM(start_prob.shape[0], "diag") hmm.startprob_ = start_prob hmm.transmat_ = transmat hmm.means_ = means hmm.covars_ = cov cls = hmm.predict(mt_feats_norm_or.T) # Post-process method 2: median filtering: cls = scipy.signal.medfilt(cls, 13) cls = scipy.signal.medfilt(cls, 11) class_names = ["speaker{0:d}".format(c) for c in range(num_speakers)] # load ground-truth if available gt_file = filename.replace('.wav', '.segments') # if groundtruth exists if os.path.isfile(gt_file): seg_start, seg_end, seg_labs = read_segmentation_gt(gt_file) flags_gt, class_names_gt = segments_to_labels(seg_start, seg_end, seg_labs, mid_step) if plot_res: fig = plt.figure() if n_speakers > 0: ax1 = fig.add_subplot(111) else: ax1 = fig.add_subplot(211) ax1.set_yticks(np.array(range(len(class_names)))) ax1.axis((0, duration, -1, len(class_names))) ax1.set_yticklabels(class_names) ax1.plot(np.array(range(len(cls))) * mid_step + mid_step / 2.0, cls) if os.path.isfile(gt_file): if plot_res: ax1.plot( np.array(range(len(flags_gt))) * mid_step + mid_step / 2.0, flags_gt, 'r') purity_cluster_m, purity_speaker_m = \ evaluate_speaker_diarization(cls, flags_gt) print("{0:.1f}\t{1:.1f}".format(100 * purity_cluster_m, 100 * purity_speaker_m)) if plot_res: plt.title("Cluster purity: {0:.1f}% - " "Speaker purity: {1:.1f}%".format( 100 * purity_cluster_m, 100 * purity_speaker_m)) if plot_res: plt.xlabel("time (seconds)") if n_speakers <= 0: plt.subplot(212) plt.plot(s_range, sil_all) plt.xlabel("number of clusters") plt.ylabel("average clustering's sillouette") plt.show() return cls
def mid_term_file_classification(input_file, model_name, model_type, plot_results=False, gt_file=""): """ This function performs mid-term classification of an audio stream. Towards this end, supervised knowledge is used, i.e. a pre-trained classifier. ARGUMENTS: - input_file: path of the input WAV file - model_name: name of the classification model - model_type: svm or knn depending on the classifier type - plot_results: True if results are to be plotted using matplotlib along with a set of statistics RETURNS: - segs: a sequence of segment's endpoints: segs[i] is the endpoint of the i-th segment (in seconds) - classes: a sequence of class flags: class[i] is the class ID of the i-th segment """ labels = [] accuracy = 0.0 class_names = [] cm = np.array([]) if not os.path.isfile(model_name): print("mtFileClassificationError: input model_type not found!") return labels, class_names, accuracy, cm # Load classifier: if model_type == "knn": classifier, mean, std, class_names, mt_win, mid_step, st_win, \ st_step, compute_beat = at.load_model_knn(model_name) else: classifier, mean, std, class_names, mt_win, mid_step, st_win, \ st_step, compute_beat = at.load_model(model_name) if compute_beat: print("Model " + model_name + " contains long-term music features " "(beat etc) and cannot be used in " "segmentation") return labels, class_names, accuracy, cm # load input file sampling_rate, signal = audioBasicIO.read_audio_file(input_file) # could not read file if sampling_rate == 0: return labels, class_names, accuracy, cm # convert stereo (if) to mono signal = audioBasicIO.stereo_to_mono(signal) # mid-term feature extraction: mt_feats, _, _ = \ mtf.mid_feature_extraction(signal, sampling_rate, mt_win * sampling_rate, mid_step * sampling_rate, round(sampling_rate * st_win), round(sampling_rate * st_step)) posterior_matrix = [] # for each feature vector (i.e. for each fix-sized segment): for col_index in range(mt_feats.shape[1]): # normalize current feature v feature_vector = (mt_feats[:, col_index] - mean) / std # classify vector: label_predicted, posterior = \ at.classifier_wrapper(classifier, model_type, feature_vector) labels.append(label_predicted) # update probability matrix posterior_matrix.append(np.max(posterior)) labels = np.array(labels) # convert fix-sized flags to segments and classes segs, classes = labels_to_segments(labels, mid_step) segs[-1] = len(signal) / float(sampling_rate) # Load grount-truth: labels_gt, class_names_gt, accuracy, cm = \ load_ground_truth(gt_file, labels, class_names, mid_step, plot_results) return labels, class_names, accuracy, cm
the recording (<=0 for unknown) - mt_size (opt) mid-term window size - mt_step (opt) mid-term window step - st_win (opt) short-term window size - lda_dim (opt LDA dimension (0 for no LDA) - plot_res (opt) 0 for not plotting the results 1 for plotting """ [fs, x] = audioBasicIO.read_audio_file(filename) x = audioBasicIO.stereo_to_mono(x) duration = len(x) / fs [ classifier_1, MEAN1, STD1, classNames1, mtWin1, mtStep1, stWin1, stStep1, computeBEAT1 ] = aT.load_model_knn( os.path.join(os.path.dirname(os.path.realpath(__file__)), "data/models", "knn_speaker_10")) [ classifier_2, MEAN2, STD2, classNames2, mtWin2, mtStep2, stWin2, stStep2, computeBEAT2 ] = aT.load_model_knn( os.path.join(os.path.dirname(os.path.realpath(__file__)), "data/models", "knn_speaker_male_female")) [mt_feats, st_feats, _] = aF.mid_feature_extraction(x, fs, mt_size * fs, mt_step * fs, round(fs * st_win), round(fs * st_win * 0.5)) MidTermFeatures2 = np.zeros( (mt_feats.shape[0] + len(classNames1) + len(classNames2),
def speakerDiarization(fileName, numOfSpeakers, mtSize=2.0, mtStep=0.2, stWin=0.05, LDAdim=35, PLOT=False): ''' ARGUMENTS: - fileName: the name of the WAV file to be analyzed - numOfSpeakers the number of speakers (clusters) in the recording (<=0 for unknown) - mtSize (opt) mid-term window size - mtStep (opt) mid-term window step - stWin (opt) short-term window size - LDAdim (opt) LDA dimension (0 for no LDA) - PLOT (opt) 0 for not plotting the results 1 for plottingy ''' [Fs, x] = audioBasicIO.readAudioFile(fileName) x = audioBasicIO.stereo2mono(x) Duration = len(x) / Fs [ Classifier1, MEAN1, STD1, classNames1, mtWin1, mtStep1, stWin1, stStep1, computeBEAT1 ] = aT.load_model_knn( os.path.join(os.path.dirname(os.path.realpath(__file__)), "data", "knnSpeakerAll")) [ Classifier2, MEAN2, STD2, classNames2, mtWin2, mtStep2, stWin2, stStep2, computeBEAT2 ] = aT.load_model_knn( os.path.join(os.path.dirname(os.path.realpath(__file__)), "data", "knnSpeakerFemaleMale")) [MidTermFeatures, ShortTermFeatures] = aF.mtFeatureExtraction(x, Fs, mtSize * Fs, mtStep * Fs, round(Fs * stWin), round(Fs * stWin * 0.5)) MidTermFeatures2 = numpy.zeros( (MidTermFeatures.shape[0] + len(classNames1) + len(classNames2), MidTermFeatures.shape[1])) for i in range(MidTermFeatures.shape[1]): curF1 = (MidTermFeatures[:, i] - MEAN1) / STD1 curF2 = (MidTermFeatures[:, i] - MEAN2) / STD2 [Result, P1] = aT.classifierWrapper(Classifier1, "knn", curF1) [Result, P2] = aT.classifierWrapper(Classifier2, "knn", curF2) MidTermFeatures2[0:MidTermFeatures.shape[0], i] = MidTermFeatures[:, i] MidTermFeatures2[MidTermFeatures.shape[0]:MidTermFeatures.shape[0] + len(classNames1), i] = P1 + 0.0001 MidTermFeatures2[MidTermFeatures.shape[0] + len(classNames1)::, i] = P2 + 0.0001 MidTermFeatures = MidTermFeatures2 # TODO # SELECT FEATURES: #iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20]; # SET 0A #iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20, 99,100]; # SET 0B #iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96, # 97,98, 99,100]; # SET 0C iFeaturesSelect = [ 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53 ] # SET 1A #iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20,41,42,43,44,45,46,47,48,49,50,51,52,53, 99,100]; # SET 1B #iFeaturesSelect = [8,9,10,11,12,13,14,15,16,17,18,19,20,41,42,43,44,45,46,47,48,49,50,51,52,53, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98, 99,100]; # SET 1C #iFeaturesSelect = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53]; # SET 2A #iFeaturesSelect = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53, 99,100]; # SET 2B #iFeaturesSelect = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98, 99,100]; # SET 2C #iFeaturesSelect = range(100); # SET 3 #MidTermFeatures += numpy.random.rand(MidTermFeatures.shape[0], MidTermFeatures.shape[1]) * 0.000000010 MidTermFeatures = MidTermFeatures[iFeaturesSelect, :] (MidTermFeaturesNorm, MEAN, STD) = aT.normalizeFeatures([MidTermFeatures.T]) MidTermFeaturesNorm = MidTermFeaturesNorm[0].T numOfWindows = MidTermFeatures.shape[1] # remove outliers: DistancesAll = numpy.sum(distance.squareform( distance.pdist(MidTermFeaturesNorm.T)), axis=0) MDistancesAll = numpy.mean(DistancesAll) iNonOutLiers = numpy.nonzero(DistancesAll < 1.2 * MDistancesAll)[0] # TODO: Combine energy threshold for outlier removal: #EnergyMin = numpy.min(MidTermFeatures[1,:]) #EnergyMean = numpy.mean(MidTermFeatures[1,:]) #Thres = (1.5*EnergyMin + 0.5*EnergyMean) / 2.0 #iNonOutLiers = numpy.nonzero(MidTermFeatures[1,:] > Thres)[0] #print iNonOutLiers perOutLier = (100.0 * (numOfWindows - iNonOutLiers.shape[0])) / numOfWindows MidTermFeaturesNormOr = MidTermFeaturesNorm MidTermFeaturesNorm = MidTermFeaturesNorm[:, iNonOutLiers] # LDA dimensionality reduction: if LDAdim > 0: #[mtFeaturesToReduce, _] = aF.mtFeatureExtraction(x, Fs, mtSize * Fs, stWin * Fs, round(Fs*stWin), round(Fs*stWin)); # extract mid-term features with minimum step: mtWinRatio = int(round(mtSize / stWin)) mtStepRatio = int(round(stWin / stWin)) mtFeaturesToReduce = [] numOfFeatures = len(ShortTermFeatures) numOfStatistics = 2 #for i in range(numOfStatistics * numOfFeatures + 1): for i in range(numOfStatistics * numOfFeatures): mtFeaturesToReduce.append([]) for i in range(numOfFeatures): # for each of the short-term features: curPos = 0 N = len(ShortTermFeatures[i]) while (curPos < N): N1 = curPos N2 = curPos + mtWinRatio if N2 > N: N2 = N curStFeatures = ShortTermFeatures[i][N1:N2] mtFeaturesToReduce[i].append(numpy.mean(curStFeatures)) mtFeaturesToReduce[i + numOfFeatures].append( numpy.std(curStFeatures)) curPos += mtStepRatio mtFeaturesToReduce = numpy.array(mtFeaturesToReduce) mtFeaturesToReduce2 = numpy.zeros( (mtFeaturesToReduce.shape[0] + len(classNames1) + len(classNames2), mtFeaturesToReduce.shape[1])) for i in range(mtFeaturesToReduce.shape[1]): curF1 = (mtFeaturesToReduce[:, i] - MEAN1) / STD1 curF2 = (mtFeaturesToReduce[:, i] - MEAN2) / STD2 [Result, P1] = aT.classifierWrapper(Classifier1, "knn", curF1) [Result, P2] = aT.classifierWrapper(Classifier2, "knn", curF2) mtFeaturesToReduce2[0:mtFeaturesToReduce.shape[0], i] = mtFeaturesToReduce[:, i] mtFeaturesToReduce2[ mtFeaturesToReduce.shape[0]:mtFeaturesToReduce.shape[0] + len(classNames1), i] = P1 + 0.0001 mtFeaturesToReduce2[mtFeaturesToReduce.shape[0] + len(classNames1)::, i] = P2 + 0.0001 mtFeaturesToReduce = mtFeaturesToReduce2 mtFeaturesToReduce = mtFeaturesToReduce[iFeaturesSelect, :] #mtFeaturesToReduce += numpy.random.rand(mtFeaturesToReduce.shape[0], mtFeaturesToReduce.shape[1]) * 0.0000010 (mtFeaturesToReduce, MEAN, STD) = aT.normalizeFeatures([mtFeaturesToReduce.T]) mtFeaturesToReduce = mtFeaturesToReduce[0].T #DistancesAll = numpy.sum(distance.squareform(distance.pdist(mtFeaturesToReduce.T)), axis=0) #MDistancesAll = numpy.mean(DistancesAll) #iNonOutLiers2 = numpy.nonzero(DistancesAll < 3.0*MDistancesAll)[0] #mtFeaturesToReduce = mtFeaturesToReduce[:, iNonOutLiers2] Labels = numpy.zeros((mtFeaturesToReduce.shape[1], )) LDAstep = 1.0 LDAstepRatio = LDAstep / stWin #print LDAstep, LDAstepRatio for i in range(Labels.shape[0]): Labels[i] = int(i * stWin / LDAstepRatio) clf = sklearn.discriminant_analysis.LinearDiscriminantAnalysis( n_components=LDAdim) clf.fit(mtFeaturesToReduce.T, Labels) MidTermFeaturesNorm = (clf.transform(MidTermFeaturesNorm.T)).T if numOfSpeakers <= 0: sRange = range(2, 10) else: sRange = [numOfSpeakers] clsAll = [] silAll = [] centersAll = [] for iSpeakers in sRange: k_means = sklearn.cluster.KMeans(n_clusters=iSpeakers) k_means.fit(MidTermFeaturesNorm.T) cls = k_means.labels_ means = k_means.cluster_centers_ # Y = distance.squareform(distance.pdist(MidTermFeaturesNorm.T)) clsAll.append(cls) centersAll.append(means) silA = [] silB = [] for c in range(iSpeakers ): # for each speaker (i.e. for each extracted cluster) clusterPerCent = numpy.nonzero(cls == c)[0].shape[0] / float( len(cls)) if clusterPerCent < 0.020: silA.append(0.0) silB.append(0.0) else: MidTermFeaturesNormTemp = MidTermFeaturesNorm[:, cls == c] # get subset of feature vectors Yt = distance.pdist( MidTermFeaturesNormTemp.T ) # compute average distance between samples that belong to the cluster (a values) silA.append(numpy.mean(Yt) * clusterPerCent) silBs = [] for c2 in range( iSpeakers ): # compute distances from samples of other clusters if c2 != c: clusterPerCent2 = numpy.nonzero( cls == c2)[0].shape[0] / float(len(cls)) MidTermFeaturesNormTemp2 = MidTermFeaturesNorm[:, cls == c2] Yt = distance.cdist(MidTermFeaturesNormTemp.T, MidTermFeaturesNormTemp2.T) silBs.append( numpy.mean(Yt) * (clusterPerCent + clusterPerCent2) / 2.0) silBs = numpy.array(silBs) silB.append( min(silBs) ) # ... and keep the minimum value (i.e. the distance from the "nearest" cluster) silA = numpy.array(silA) silB = numpy.array(silB) sil = [] for c in range(iSpeakers): # for each cluster (speaker) sil.append((silB[c] - silA[c]) / (max(silB[c], silA[c]) + 0.00001)) # compute silhouette silAll.append(numpy.mean(sil)) # keep the AVERAGE SILLOUETTE #silAll = silAll * (1.0/(numpy.power(numpy.array(sRange),0.5))) imax = numpy.argmax(silAll) # position of the maximum sillouette value nSpeakersFinal = sRange[imax] # optimal number of clusters # generate the final set of cluster labels # (important: need to retrieve the outlier windows: this is achieved by giving them the value of their nearest non-outlier window) cls = numpy.zeros((numOfWindows, )) for i in range(numOfWindows): j = numpy.argmin(numpy.abs(i - iNonOutLiers)) cls[i] = clsAll[imax][j] # Post-process method 1: hmm smoothing for i in range(1): startprob, transmat, means, cov = trainHMM_computeStatistics( MidTermFeaturesNormOr, cls) hmm = hmmlearn.hmm.GaussianHMM(startprob.shape[0], "diag") # hmm training hmm.startprob_ = startprob hmm.transmat_ = transmat hmm.means_ = means hmm.covars_ = cov cls = hmm.predict(MidTermFeaturesNormOr.T) # Post-process method 2: median filtering: cls = scipy.signal.medfilt(cls, 13) cls = scipy.signal.medfilt(cls, 11) sil = silAll[imax] # final sillouette classNames = ["speaker{0:d}".format(c) for c in range(nSpeakersFinal)] # load ground-truth if available gtFile = fileName.replace('.wav', '.segments') # open for annotated file if os.path.isfile(gtFile): # if groundturh exists [segStart, segEnd, segLabels] = readSegmentGT(gtFile) # read GT data flagsGT, classNamesGT = segs2flags(segStart, segEnd, segLabels, mtStep) # convert to flags if PLOT: fig = plt.figure() if numOfSpeakers > 0: ax1 = fig.add_subplot(111) else: ax1 = fig.add_subplot(211) ax1.set_yticks(numpy.array(range(len(classNames)))) ax1.axis((0, Duration, -1, len(classNames))) ax1.set_yticklabels(classNames) ax1.plot(numpy.array(range(len(cls))) * mtStep + mtStep / 2.0, cls) if os.path.isfile(gtFile): if PLOT: ax1.plot( numpy.array(range(len(flagsGT))) * mtStep + mtStep / 2.0, flagsGT, 'r') purityClusterMean, puritySpeakerMean = evaluateSpeakerDiarization( cls, flagsGT) print("{0:.1f}\t{1:.1f}".format(100 * purityClusterMean, 100 * puritySpeakerMean)) if PLOT: plt.title( "Cluster purity: {0:.1f}% - Speaker purity: {1:.1f}%".format( 100 * purityClusterMean, 100 * puritySpeakerMean)) if PLOT: plt.xlabel("time (seconds)") #print sRange, silAll if numOfSpeakers <= 0: plt.subplot(212) plt.plot(sRange, silAll) plt.xlabel("number of clusters") plt.ylabel("average clustering's sillouette") plt.show() return cls
def fileGreenwaySpeakerDiarization(filename, output_folder, speech_key="52fe944f29784ae288482e5eb3092e2a", service_region="eastus2", n_speakers=2, mt_size=2.0, mt_step=0.2, st_win=0.05, lda_dim=35): """ ARGUMENTS: - filename: the name of the WAV file to be analyzed the filename should have a suffix of the form: ..._min_3 this informs the service that audio file corresponds to the 3rd minute of the dialogue - output_folder the folder location for saving the audio snippets generated from diarization - speech_key mid-term window size - service_region the number of speakers (clusters) in the recording (<=0 for unknown) - n_speakers the number of speakers (clusters) in the recording (<=0 for unknown) - mt_size (opt) mid-term window size - mt_step (opt) mid-term window step - st_win (opt) short-term window size - lda_dim (opt LDA dimension (0 for no LDA) - plot_res (opt) 0 for not plotting the results 1 for plotting - save_plot (opt) 1|True for saving plot in output folder """ ''' OUTPUTS: - cls: this is a vector with speaker ids in chronological sequence of speaker dialogue. - output: a list of python dictionaries containing dialogue sequence information. - dialogue_id - sequence_id - start_time - end_time - text ''' filename_only = filename if "/" not in filename else filename.split("/")[-1] nameoffile = filename_only.split("_min_")[0] timeoffile = filename_only.split("_min_")[1] [fs, x] = audioBasicIO.read_audio_file(filename) x = audioBasicIO.stereo_to_mono(x) duration = len(x) / fs [classifier_1, MEAN1, STD1, classNames1, mtWin1, mtStep1, stWin1, stStep1, computeBEAT1] = aT.load_model_knn( os.path.join(os.path.dirname(os.path.realpath(__file__)), "pyAudioAnalysis/data/models", "knn_speaker_10")) [classifier_2, MEAN2, STD2, classNames2, mtWin2, mtStep2, stWin2, stStep2, computeBEAT2] = aT.load_model_knn( os.path.join(os.path.dirname(os.path.realpath(__file__)), "pyAudioAnalysis/data/models", "knn_speaker_male_female")) [mt_feats, st_feats, _] = aF.mid_feature_extraction(x, fs, mt_size * fs, mt_step * fs, round(fs * st_win), round(fs*st_win * 0.5)) MidTermFeatures2 = np.zeros((mt_feats.shape[0] + len(classNames1) + len(classNames2), mt_feats.shape[1])) for i in range(mt_feats.shape[1]): cur_f1 = (mt_feats[:, i] - MEAN1) / STD1 cur_f2 = (mt_feats[:, i] - MEAN2) / STD2 [res, P1] = aT.classifierWrapper(classifier_1, "knn", cur_f1) [res, P2] = aT.classifierWrapper(classifier_2, "knn", cur_f2) MidTermFeatures2[0:mt_feats.shape[0], i] = mt_feats[:, i] MidTermFeatures2[mt_feats.shape[0]:mt_feats.shape[0] + len(classNames1), i] = P1 + 0.0001 MidTermFeatures2[mt_feats.shape[0] + len(classNames1)::, i] = P2 + 0.0001 mt_feats = MidTermFeatures2 # TODO iFeaturesSelect = [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53] mt_feats = mt_feats[iFeaturesSelect, :] (mt_feats_norm, MEAN, STD) = aT.normalizeFeatures([mt_feats.T]) mt_feats_norm = mt_feats_norm[0].T n_wins = mt_feats.shape[1] # remove outliers: dist_all = np.sum(distance.squareform(distance.pdist(mt_feats_norm.T)), axis=0) m_dist_all = np.mean(dist_all) i_non_outliers = np.nonzero(dist_all < 1.2 * m_dist_all)[0] # TODO: Combine energy threshold for outlier removal: #EnergyMin = np.min(mt_feats[1,:]) #EnergyMean = np.mean(mt_feats[1,:]) #Thres = (1.5*EnergyMin + 0.5*EnergyMean) / 2.0 #i_non_outliers = np.nonzero(mt_feats[1,:] > Thres)[0] # print i_non_outliers perOutLier = (100.0 * (n_wins - i_non_outliers.shape[0])) / n_wins mt_feats_norm_or = mt_feats_norm mt_feats_norm = mt_feats_norm[:, i_non_outliers] # LDA dimensionality reduction: if lda_dim > 0: # [mt_feats_to_red, _, _] = aF.mtFeatureExtraction(x, fs, mt_size * fs, # st_win * fs, round(fs*st_win), round(fs*st_win)); # extract mid-term features with minimum step: mt_win_ratio = int(round(mt_size / st_win)) mt_step_ratio = int(round(st_win / st_win)) mt_feats_to_red = [] num_of_features = len(st_feats) num_of_stats = 2 # for i in range(num_of_stats * num_of_features + 1): for i in range(num_of_stats * num_of_features): mt_feats_to_red.append([]) # for each of the short-term features: for i in range(num_of_features): curPos = 0 N = len(st_feats[i]) while (curPos < N): N1 = curPos N2 = curPos + mt_win_ratio if N2 > N: N2 = N curStFeatures = st_feats[i][N1:N2] mt_feats_to_red[i].append(np.mean(curStFeatures)) mt_feats_to_red[i + num_of_features].append(np.std(curStFeatures)) curPos += mt_step_ratio mt_feats_to_red = np.array(mt_feats_to_red) mt_feats_to_red_2 = np.zeros((mt_feats_to_red.shape[0] + len(classNames1) + len(classNames2), mt_feats_to_red.shape[1])) for i in range(mt_feats_to_red.shape[1]): cur_f1 = (mt_feats_to_red[:, i] - MEAN1) / STD1 cur_f2 = (mt_feats_to_red[:, i] - MEAN2) / STD2 [res, P1] = aT.classifierWrapper(classifier_1, "knn", cur_f1) [res, P2] = aT.classifierWrapper(classifier_2, "knn", cur_f2) mt_feats_to_red_2[0:mt_feats_to_red.shape[0], i] = mt_feats_to_red[:, i] mt_feats_to_red_2[mt_feats_to_red.shape[0] :mt_feats_to_red.shape[0] + len(classNames1), i] = P1 + 0.0001 mt_feats_to_red_2[mt_feats_to_red.shape[0] + len(classNames1)::, i] = P2 + 0.0001 mt_feats_to_red = mt_feats_to_red_2 mt_feats_to_red = mt_feats_to_red[iFeaturesSelect, :] #mt_feats_to_red += np.random.rand(mt_feats_to_red.shape[0], mt_feats_to_red.shape[1]) * 0.0000010 (mt_feats_to_red, MEAN, STD) = aT.normalizeFeatures( [mt_feats_to_red.T]) mt_feats_to_red = mt_feats_to_red[0].T #dist_all = np.sum(distance.squareform(distance.pdist(mt_feats_to_red.T)), axis=0) #m_dist_all = np.mean(dist_all) #iNonOutLiers2 = np.nonzero(dist_all < 3.0*m_dist_all)[0] #mt_feats_to_red = mt_feats_to_red[:, iNonOutLiers2] Labels = np.zeros((mt_feats_to_red.shape[1], )) LDAstep = 1.0 LDAstepRatio = LDAstep / st_win # print LDAstep, LDAstepRatio for i in range(Labels.shape[0]): Labels[i] = int(i*st_win/LDAstepRatio) clf = sklearn.discriminant_analysis.LinearDiscriminantAnalysis( n_components=lda_dim) clf.fit(mt_feats_to_red.T, Labels) mt_feats_norm = (clf.transform(mt_feats_norm.T)).T if n_speakers <= 0: s_range = range(2, 10) else: s_range = [n_speakers] clsAll = [] sil_all = [] centersAll = [] for iSpeakers in s_range: k_means = sklearn.cluster.KMeans(n_clusters=iSpeakers) k_means.fit(mt_feats_norm.T) cls = k_means.labels_ means = k_means.cluster_centers_ # Y = distance.squareform(distance.pdist(mt_feats_norm.T)) clsAll.append(cls) centersAll.append(means) sil_1 = [] sil_2 = [] for c in range(iSpeakers): # for each speaker (i.e. for each extracted cluster) clust_per_cent = np.nonzero(cls == c)[0].shape[0] / \ float(len(cls)) if clust_per_cent < 0.020: sil_1.append(0.0) sil_2.append(0.0) else: # get subset of feature vectors mt_feats_norm_temp = mt_feats_norm[:, cls == c] # compute average distance between samples # that belong to the cluster (a values) Yt = distance.pdist(mt_feats_norm_temp.T) sil_1.append(np.mean(Yt)*clust_per_cent) silBs = [] for c2 in range(iSpeakers): # compute distances from samples of other clusters if c2 != c: clust_per_cent_2 = np.nonzero(cls == c2)[0].shape[0] /\ float(len(cls)) MidTermFeaturesNormTemp2 = mt_feats_norm[:, cls == c2] Yt = distance.cdist(mt_feats_norm_temp.T, MidTermFeaturesNormTemp2.T) silBs.append(np.mean(Yt)*(clust_per_cent + clust_per_cent_2)/2.0) silBs = np.array(silBs) # ... and keep the minimum value (i.e. # the distance from the "nearest" cluster) sil_2.append(min(silBs)) sil_1 = np.array(sil_1) sil_2 = np.array(sil_2) sil = [] for c in range(iSpeakers): # for each cluster (speaker) compute silhouette sil.append((sil_2[c] - sil_1[c]) / (max(sil_2[c], sil_1[c]) + 0.00001)) # keep the AVERAGE SILLOUETTE sil_all.append(np.mean(sil)) imax = np.argmax(sil_all) # optimal number of clusters nSpeakersFinal = s_range[imax] # generate the final set of cluster labels # (important: need to retrieve the outlier windows: # this is achieved by giving them the value of their # nearest non-outlier window) cls = np.zeros((n_wins,)) for i in range(n_wins): j = np.argmin(np.abs(i-i_non_outliers)) cls[i] = clsAll[imax][j] # Post-process method 1: hmm smoothing for i in range(1): # hmm training start_prob, transmat, means, cov = \ trainHMM_computeStatistics(mt_feats_norm_or, cls) hmm = hmmlearn.hmm.GaussianHMM(start_prob.shape[0], "diag") hmm.startprob_ = start_prob hmm.transmat_ = transmat hmm.means_ = means hmm.covars_ = cov cls = hmm.predict(mt_feats_norm_or.T) # Post-process method 2: median filtering: cls = scipy.signal.medfilt(cls, 13) cls = scipy.signal.medfilt(cls, 11) sil = sil_all[imax] class_names = ["speaker{0:d}".format(c) for c in range(nSpeakersFinal)] # load ground-truth if available gt_file = filename.replace('.wav', '.segments') # if groundturh exists if os.path.isfile(gt_file): [seg_start, seg_end, seg_labs] = readSegmentGT(gt_file) flags_gt, class_names_gt = segs2flags( seg_start, seg_end, seg_labs, mt_step) # if plot_res: # fig = plt.figure() # if n_speakers > 0: # ax1 = fig.add_subplot(111) # else: # ax1 = fig.add_subplot(211) # ax1.set_yticks(np.array(range(len(class_names)))) # ax1.axis((0, duration, -1, len(class_names))) # ax1.set_yticklabels(class_names) # ax1.plot(np.array(range(len(cls)))*mt_step+mt_step/2.0, cls) # if os.path.isfile(gt_file): # if plot_res: # ax1.plot(np.array(range(len(flags_gt))) * # mt_step + mt_step / 2.0, flags_gt, 'r') # purity_cluster_m, purity_speaker_m = \ # evaluateSpeakerDiarization(cls, flags_gt) # print("{0:.1f}\t{1:.1f}".format(100 * purity_cluster_m, # 100 * purity_speaker_m)) # if plot_res: # plt.title("Cluster purity: {0:.1f}% - " # "Speaker purity: {1:.1f}%".format(100 * purity_cluster_m, # 100 * purity_speaker_m)) # if plot_res: # plt.xlabel("time (seconds)") # # print s_range, sil_all # if n_speakers <= 0: # plt.subplot(212) # plt.plot(s_range, sil_all) # plt.xlabel("number of clusters") # plt.ylabel("average clustering's sillouette") # if save_plot: # plt.savefig( # f"{output_folder}{filename_only}".replace(".wav", ".png")) # else: # pass # plt.show() # Create Time Vector time_vec = np.array(range(len(cls)))*mt_step+mt_step/2.0 # Find Change Points speaker_change_index = np.where(np.roll(cls, 1) != cls)[0] # Create List of dialogue convos output_list = [] temp = {} for ind, sc in enumerate(speaker_change_index): temp['dialogue_id'] = str(datetime.now()).strip() temp['sequence_id'] = str(ind) temp['speaker'] = list(cls)[sc] temp['start_time'] = time_vec[sc] temp['end_time'] = time_vec[speaker_change_index[ind+1] - 1] if ind+1 < len(speaker_change_index) else time_vec[-1] temp["text"] = "" output_list.append(temp) temp = {} def snip_transcribe(output_list, filename, output_folder=output_folder, speech_key=speech_key, service_region=service_region): speech_config = speechsdk.SpeechConfig( subscription=speech_key, region=service_region) speech_config.enable_dictation def recognized_cb(evt): if evt.result.reason == speechsdk.ResultReason.RecognizedSpeech: # Do something with the recognized text output_list[ind]['text'] = output_list[ind]['text'] + \ str(evt.result.text) print(evt.result.text) for ind, diag in enumerate(output_list): t1 = diag['start_time'] t2 = diag['end_time'] newAudio = AudioSegment.from_wav(filename) chunk = newAudio[t1*1000:t2*1000] filename_out = output_folder + f"snippet_{diag['sequence_id']}.wav" # Exports to a wav file in the current path. chunk.export(filename_out, format="wav") done = False def stop_cb(evt): """callback that signals to stop continuous recognition upon receiving an event `evt`""" print('CLOSING on {}'.format(evt)) nonlocal done done = True audio_input = speechsdk.AudioConfig(filename=filename_out) speech_recognizer = speechsdk.SpeechRecognizer( speech_config=speech_config, audio_config=audio_input) output_list[ind]['snippet_path'] = filename_out speech_recognizer.recognized.connect(recognized_cb) speech_recognizer.session_stopped.connect(stop_cb) speech_recognizer.canceled.connect(stop_cb) # Start continuous speech recognition speech_recognizer.start_continuous_recognition() while not done: time.sleep(.5) speech_recognizer.stop_continuous_recognition() return output_list output = snip_transcribe(output_list, filename, output_folder=output_folder) output_json = {filename_only: output} with open(f"{output_folder}{nameoffile}_{timeoffile}.txt", "w") as outfile: json.dump(output_json, outfile) return cls, output_json
def mtFileClassification(inputFile, modelName, modelType, plotResults=False, gtFile="", return_for_user=False): ''' This function performs mid-term classification of an audio stream. Towards this end, supervised knowledge is used, i.e. a pre-trained classifier. ARGUMENTS: - inputFile: path of the input WAV file - modelName: name of the classification model - modelType: svm or knn depending on the classifier type - plotResults: True if results are to be plotted using matplotlib along with a set of statistics RETURNS: - segs: a sequence of segment's endpoints: segs[i] is the endpoint of the i-th segment (in seconds) - classes: a sequence of class flags: class[i] is the class ID of the i-th segment ''' if not os.path.isfile(modelName): print("mtFileClassificationError: input modelType not found!") return (-1, -1, -1, -1) # Load classifier: if modelType == "knn": [Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT] = \ aT.load_model_knn(modelName) else: [ Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT ] = aT.load_model(modelName) if computeBEAT: print("Model " + modelName + " contains long-term music features " "(beat etc) and cannot be used in " "segmentation") return (-1, -1, -1, -1) [Fs, x] = audioBasicIO.readAudioFile(inputFile) # load input file if Fs == -1: # could not read file return (-1, -1, -1, -1) x = audioBasicIO.stereo2mono(x) # convert stereo (if) to mono Duration = len(x) / Fs # mid-term feature extraction: [MidTermFeatures, _] = aF.mtFeatureExtraction(x, Fs, mtWin * Fs, mtStep * Fs, round(Fs * stWin), round(Fs * stStep)) flags = [] Ps = [] flagsInd = [] for i in range( MidTermFeatures.shape[1] ): # for each feature vector (i.e. for each fix-sized segment): curFV = (MidTermFeatures[:, i] - MEAN) / STD # normalize current feature vector [Result, P] = aT.classifierWrapper(Classifier, modelType, curFV) # classify vector flagsInd.append(Result) flags.append(classNames[int(Result)]) # update class label matrix Ps.append(numpy.max(P)) # update probability matrix flagsInd = numpy.array(flagsInd) # 1-window smoothing for i in range(1, len(flagsInd) - 1): if flagsInd[i - 1] == flagsInd[i + 1]: flagsInd[i] = flagsInd[i + 1] flags[i] = flags[i + 1] (segs, classes) = flags2segs( flags, mtStep) # convert fix-sized flags to segments and classes segs[-1, 1] = len(x) / float(Fs) # Load grount-truth: if os.path.isfile(gtFile): [segStartGT, segEndGT, segLabelsGT] = readSegmentGT(gtFile) flagsGT, classNamesGT = segs2flags(segStartGT, segEndGT, segLabelsGT, mtStep) flagsIndGT = [] for j, fl in enumerate(flagsGT): # "align" labels with GT if classNamesGT[flagsGT[j]] in classNames: flagsIndGT.append(classNames.index(classNamesGT[flagsGT[j]])) else: flagsIndGT.append(-1) flagsIndGT = numpy.array(flagsIndGT) CM = numpy.zeros((len(classNamesGT), len(classNamesGT))) for i in range(min(flagsInd.shape[0], flagsIndGT.shape[0])): CM[int(flagsIndGT[i]), int(flagsInd[i])] += 1 else: CM = [] flagsIndGT = numpy.array([]) acc = plotSegmentationResults(flagsInd, flagsIndGT, classNames, mtStep, not plotResults) if acc >= 0: print("Overall Accuracy: {0:.3f}".format(acc)) if return_for_user: return {'segments': segs, 'classes': classes, 'accuracy': acc} else: return (flagsInd, classNamesGT, acc, CM) else: if return_for_user: return {'segments': segs, 'classes': classes} else: return (flagsInd, classNames, acc, CM)